期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Top-k probabilistic prevalent co-location mining in spatially uncertain data sets 被引量:5
1
作者 Lizhen WANG Jun HAN +1 位作者 Hongmei CHEN junli lu 《Frontiers of Computer Science》 SCIE EI CSCD 2016年第3期488-503,共16页
A co-location pattern is a set of spatial features whose instances frequently appear in a spatial neighborhood. This paper efficiently mines the top-k probabilistic prevalent co-locations over spatially uncertain data... A co-location pattern is a set of spatial features whose instances frequently appear in a spatial neighborhood. This paper efficiently mines the top-k probabilistic prevalent co-locations over spatially uncertain data sets and makes the following contributions: 1) the concept of the top-k prob- abilistic prevalent co-locations based on a possible world model is defined; 2) a framework for discovering the top- k probabilistic prevalent co-locations is set up; 3) a matrix method is proposed to improve the computation of the preva- lence probability of a top-k candidate, and two pruning rules of the matrix block are given to accelerate the search for ex- act solutions; 4) a polynomial matrix is developed to further speed up the top-k candidate refinement process; 5) an ap- proximate algorithm with compensation factor is introduced so that relatively large quantity of data can be processed quickly. The efficiency of our proposed algorithms as well as the accuracy of the approximation algorithms is evaluated with an extensive set of experiments using both synthetic and real uncertain data sets. 展开更多
关键词 spatial co-location mining top-k probabilistic prevalent co-location mining spatially uncertain data sets matrix methods
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部