期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Game Interactive Learning:A New Paradigm towards Intelligent Decision-Making
1
作者 junliang xing Zhe Wu +4 位作者 Zhaoke Yu Renye Yan Zhipeng Ji Pin Tao Yuanchun Shi 《CAAI Artificial Intelligence Research》 2023年第1期65-74,共10页
Decision-making plays an essential role in various real-world systems like automatic driving,traffic dispatching,information system management,and emergency command and control.Recent breakthroughs in computer game sc... Decision-making plays an essential role in various real-world systems like automatic driving,traffic dispatching,information system management,and emergency command and control.Recent breakthroughs in computer game scenarios using deep reinforcement learning for intelligent decision-making have paved decision-making intelligence as a burgeoning research direction.In complex practical systems,however,factors like coupled distracting features,long-term interact links,and adversarial environments and opponents,make decision-making in practical applications challenging in modeling,computing,and explaining.This work proposes game interactive learning,a novel paradigm as a new approach towards intelligent decision-making in complex and adversarial environments.This novel paradigm highlights the function and role of a human in the process of intelligent decision-making in complex systems.It formalizes a new learning paradigm for exchanging information and knowledge between humans and the machine system.The proposed paradigm first inherits methods in game theory to model the agents and their preferences in the complex decision-making process.It then optimizes the learning objectives from equilibrium analysis using reformed machine learning algorithms to compute and pursue promising decision results for practice.Human interactions are involved when the learning process needs guidance from additional knowledge and instructions,or the human wants to understand the learning machine better.We perform preliminary experimental verification of the proposed paradigm on two challenging decision-making tasks in tactical-level War-game scenarios.Experimental results demonstrate the effectiveness of the proposed learning paradigm. 展开更多
关键词 DECISION-MAKING game interactive learning human-computer interaction game theory machine learning
原文传递
人机对抗智能技术 被引量:28
2
作者 黄凯奇 兴军亮 +2 位作者 张俊格 倪晚成 徐博 《中国科学:信息科学》 CSCD 北大核心 2020年第4期540-550,共11页
人机对抗作为人工智能研究的前沿方向,已成为国内外智能领域研究的热点,并为探寻机器智能内在生长机制和关键技术验证提供有效试验环境和途径.本文针对巨复杂、高动态、不确定的强对抗环境对智能认知和决策带来的巨大挑战,分析了人机对... 人机对抗作为人工智能研究的前沿方向,已成为国内外智能领域研究的热点,并为探寻机器智能内在生长机制和关键技术验证提供有效试验环境和途径.本文针对巨复杂、高动态、不确定的强对抗环境对智能认知和决策带来的巨大挑战,分析了人机对抗智能技术研究现状,梳理了其内涵和机理,提出了以博弈学习为核心的人机对抗智能理论研究框架;并在此基础上论述了其关键模型:对抗空间表示与建模、态势评估与推理、策略生成与优化、行动协同与控制;为复杂认知与决策问题的可建模、可计算、可解释求解奠定了基础.最后,本文总结了当前应用现状并对未来发展方向进行了展望. 展开更多
关键词 人工智能 人机对抗 机器学习 智能博弈 认知决策
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部