期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Cross-linked hole transport layers for high-efficiency perovskite tandem solar cells 被引量:1
1
作者 Yurui Wang Shuai Gu +11 位作者 Guoliang Liu Liping Zhang Zhou Liu Renxing Lin Ke Xiao Xin Luo Jianhua Shi junling du Fanying Meng Ludong Li Zhengxin Liu Hairen Tan 《Science China Chemistry》 SCIE EI CSCD 2021年第11期2025-2034,共10页
Perovskite tandem solar cells have recently received extensive attention due to their promise of achieving power conversion efficiency(PCE)beyond the limits of single-junction cells.However,their performance is still ... Perovskite tandem solar cells have recently received extensive attention due to their promise of achieving power conversion efficiency(PCE)beyond the limits of single-junction cells.However,their performance is still largely constrained by the widebandgap perovskite solar cells which show considerable open-circuit voltage(VOC)losses.Here,we increase the VOCand PCE of wide-bandgap perovskite solar cells by changing the hole transport layer(HTL)from commonly used poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine)(PTAA)to in-situ cross-linked small molecule N_(4),N_(4)′-di(naphthalen-1-yl)-N_(4),N_(4)′-bis(4-vinylphenyl)biphenyl-4,4′-diamine(VNPB).The stronger interaction and lower trap density at the VNPB/perovskite interface improve the PCE and stability of wide-bandgap perovskite solar cells.By using the cross-linked HTL for front wide-bandgap subcells,PCEs of 24.9%and 25.4%have been achieved in perovskite/perovskite and perovskite/silicon tandem solar cells,respectively.The results demonstrate that cross-linkable small molecules are promising for high-efficiency and cost-effective perovskite tandem photovoltaic devices. 展开更多
关键词 perovskite solar cells tandem solar cells hole transport layer CROSS-LINKED
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部