Perovskite tandem solar cells have recently received extensive attention due to their promise of achieving power conversion efficiency(PCE)beyond the limits of single-junction cells.However,their performance is still ...Perovskite tandem solar cells have recently received extensive attention due to their promise of achieving power conversion efficiency(PCE)beyond the limits of single-junction cells.However,their performance is still largely constrained by the widebandgap perovskite solar cells which show considerable open-circuit voltage(VOC)losses.Here,we increase the VOCand PCE of wide-bandgap perovskite solar cells by changing the hole transport layer(HTL)from commonly used poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine)(PTAA)to in-situ cross-linked small molecule N_(4),N_(4)′-di(naphthalen-1-yl)-N_(4),N_(4)′-bis(4-vinylphenyl)biphenyl-4,4′-diamine(VNPB).The stronger interaction and lower trap density at the VNPB/perovskite interface improve the PCE and stability of wide-bandgap perovskite solar cells.By using the cross-linked HTL for front wide-bandgap subcells,PCEs of 24.9%and 25.4%have been achieved in perovskite/perovskite and perovskite/silicon tandem solar cells,respectively.The results demonstrate that cross-linkable small molecules are promising for high-efficiency and cost-effective perovskite tandem photovoltaic devices.展开更多
基金financially supported by the National Key R&D Program of China(2018YFB1500102)the National Natural Science Foundation of China(61974063,22005139)+5 种基金Natural Science Foundation of Jiangsu Province(BK20202008,BK20190315)Fundamental Research Funds for the Central Universities(0205/14380252)Program for Innovative Talents and Entrepreneur in Jiangsusupported by the National Natural Science Foundation of China(62074153)Strategic Priority Research Program of Chinese Academy of Sciences(XDA17020403)Science and Technology Commission of Shanghai(19DZ1207602 and 20DZ1207103)。
文摘Perovskite tandem solar cells have recently received extensive attention due to their promise of achieving power conversion efficiency(PCE)beyond the limits of single-junction cells.However,their performance is still largely constrained by the widebandgap perovskite solar cells which show considerable open-circuit voltage(VOC)losses.Here,we increase the VOCand PCE of wide-bandgap perovskite solar cells by changing the hole transport layer(HTL)from commonly used poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine)(PTAA)to in-situ cross-linked small molecule N_(4),N_(4)′-di(naphthalen-1-yl)-N_(4),N_(4)′-bis(4-vinylphenyl)biphenyl-4,4′-diamine(VNPB).The stronger interaction and lower trap density at the VNPB/perovskite interface improve the PCE and stability of wide-bandgap perovskite solar cells.By using the cross-linked HTL for front wide-bandgap subcells,PCEs of 24.9%and 25.4%have been achieved in perovskite/perovskite and perovskite/silicon tandem solar cells,respectively.The results demonstrate that cross-linkable small molecules are promising for high-efficiency and cost-effective perovskite tandem photovoltaic devices.