This paper addresses power allocation problem for spectrum sharing multi-band cognitive radio networks, where the primary user (PU) allows secondary users (SUs) to transmit simultaneously with it by coding SU's si...This paper addresses power allocation problem for spectrum sharing multi-band cognitive radio networks, where the primary user (PU) allows secondary users (SUs) to transmit simultaneously with it by coding SU's signal together with its own signal. The PU acts as the relay for the SUs and sells its transmit power to the SUs to increase its benefit, and the SUs bid for the PU's transmit power for maximizing their utilities. We propose a power allocation scheme based on traditional ascending clock auction, in which the SUs iteratively submit the optimal power demand to the PU according to the PU's announced price, and the PU updates that price based on all SUs' total power demands. Then we mathematically prove the convergence property of the proposed auction algorithm (i.e., the auction algorithm converges in a finite number of clocks), and show that the proposed power auction algorithm can maximize the social welfare. Finally, the performance of the proposed scheme is verified by the simulation results.展开更多
文摘This paper addresses power allocation problem for spectrum sharing multi-band cognitive radio networks, where the primary user (PU) allows secondary users (SUs) to transmit simultaneously with it by coding SU's signal together with its own signal. The PU acts as the relay for the SUs and sells its transmit power to the SUs to increase its benefit, and the SUs bid for the PU's transmit power for maximizing their utilities. We propose a power allocation scheme based on traditional ascending clock auction, in which the SUs iteratively submit the optimal power demand to the PU according to the PU's announced price, and the PU updates that price based on all SUs' total power demands. Then we mathematically prove the convergence property of the proposed auction algorithm (i.e., the auction algorithm converges in a finite number of clocks), and show that the proposed power auction algorithm can maximize the social welfare. Finally, the performance of the proposed scheme is verified by the simulation results.