期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Performance analysis and flow mechanism of channel wing considering propeller slipstream
1
作者 Xiaoxuan MENG Ziyi XU +1 位作者 Min CHANG junqiang bai 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第11期165-184,共20页
The development of the Urban Air Mobility concept has proposed stringent requirements for the fixed-wing vehicle’s Short/Vertical Take-Off and Landing(S/VTOL)performance.With its lift-enhancing impact,the channel win... The development of the Urban Air Mobility concept has proposed stringent requirements for the fixed-wing vehicle’s Short/Vertical Take-Off and Landing(S/VTOL)performance.With its lift-enhancing impact,the channel wing,can improve aircraft low-speed performance and Short Take-Off and Landing(STOL)capability.It is critical for the performance analysis and flow mechanism study of a channel wing that considers the influence of propeller slipstream to guide the design of S/VTOL aircraft.The law and mechanism for the effect of the enclosing angle of the arc wing,the phase angle of the propeller,the tip clearance,the rotational speed and the chordwise position of the propeller on the channel wing are explored utilizing the quasi-steady multi reference frame method.A channel wing with a larger enclosing angle has a better ability to enhance lift and reduce drag using propeller slipstream.The effect of propeller phase angle on channel wing aerodynamic forces is periodic and weak.Increasing propeller rotational speed is helpful to enhance lift and resist flow separation for channel wing.It can reduce drag for tractor configuration but increase drag for pusher configuration.However,the nose-down pitching moment of a channel wing will grow dramatically,making longitudinal trimming in aircraft layout design challenging. 展开更多
关键词 Channel wing Computational fluid dynamics Flow interactions MECHANISMS Slipstream effect
原文传递
Adjoint-based robust optimization design of laminar flow wing under flight condition uncertainties
2
作者 Yifu CHEN Hanyue RAO +3 位作者 Yiju DENG Tihao YANG Yayun SHI junqiang bai 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期19-34,共16页
It is an inherent uncertainty problem that the application of laminar flow technology to the wing of large passenger aircraft is affected by flight conditions.In order to seek a more robust natural laminar flow contro... It is an inherent uncertainty problem that the application of laminar flow technology to the wing of large passenger aircraft is affected by flight conditions.In order to seek a more robust natural laminar flow control effect,it is necessary to develop an effective optimization design method.Meanwhile,attention must be given to the impact of crossflow(CF)instability brought on by the sweep angle.This paper constructs a robust optimization design framework based on discrete adjoint methods and non-intrusive polynomial chaos.Transition prediction is implemented by coupled Reynolds-Averaged Navier-Stokes(RANS)and simplified e^(N)method,which can consider both Tollmien-Schlichting(TS)wave and crossflow vortex instability.We have performed gradient enhancement processing on the general Polynomial Chaos Expansion(PCE),which is advantageous to reduce the computational cost of single uncertainty propagation.This processing takes advantage of the gradient information obtained by solving the coupled adjoint equations considering transition.The statistical moment gradient solution used for the robust optimization design also uses the derivatives of coupled adjoint equations.The framework is applied to the robust design of a 25°swept wing with infinite span in transonic flow.The uncertainty quantification and sensitivity analysis on the baseline wing shows that the uncertainty quantification method in this paper has high accuracy,and qualitatively reveals the factors that dominate in different flow field regions.By the robust optimization design,the mean and standard deviation of the drag coefficient can be reduced by 29%and 45%,respectively,and compared with the deterministic optimization design results,there is less possibility of forming shock waves under flight condition uncertainties.Robust optimization results illustrate the trade-off between the transition delay and the wave drag reduction. 展开更多
关键词 Adjoint method Gradient-based optimization Laminar-turbulent transition Robust design Uncertainty propagation
原文传递
Non-intrusive reduced-order model for predicting transonic flow with varying geometries 被引量:5
3
作者 Zhiwei SUN Chen WANG +4 位作者 Yu ZHENG junqiang bai Zheng LI Qiang XIA Qiujun FU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第2期508-519,共12页
A Non-Intrusive Reduced-Order Model(NIROM)based on Proper Orthogonal Decomposition(POD)has been proposed for predicting the flow fields of transonic airfoils with geometry parameters.To provide a better reduced-order ... A Non-Intrusive Reduced-Order Model(NIROM)based on Proper Orthogonal Decomposition(POD)has been proposed for predicting the flow fields of transonic airfoils with geometry parameters.To provide a better reduced-order subspace to approximate the real flow field,a domain decomposition method has been used to separate the hard-to-predict regions from the full field and POD has been adopted in the regions individually.An Artificial Neural Network(ANN)has replaced the Radial Basis Function(RBF)to interpolate the coefficients of the POD modes,aiming at improving the approximation accuracy of the NIROM for non-samples.When predicting the flow fields of transonic airfoils,the proposed NIROM has demonstrated a high performance. 展开更多
关键词 Artificial Neural Network Domain DECOMPOSITION Geometric parameters Non-Intrusive Reduced-Order Model PROPER ORTHOGONAL DECOMPOSITION TRANSONIC flow
原文传递
Improved local amplification factor transport equation for stationary crossflow instability in subsonic and transonic flows 被引量:8
4
作者 Jiakuan XU Lei QIAO junqiang bai 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3073-3081,共9页
Transition prediction is a hot research topic of fluid mechanics.For subsonic and transonic aerodynamic flows,e^(N) method based on Linear Stability Theory(LST)is usually adopted reliably to predict transition.In 2013... Transition prediction is a hot research topic of fluid mechanics.For subsonic and transonic aerodynamic flows,e^(N) method based on Linear Stability Theory(LST)is usually adopted reliably to predict transition.In 2013,Coder and Maughmer established a transport equation for Tollmien-Schlichting(T-S)instability so that the e^(N) method can be applied to general Reynolds-Average-Navier-Stokes(RANS)solvers conveniently.However,this equation focuses on T-S instability,and is invalid for crossflow instability induced transition which plays a crucial role in flow instability of three-dimensional boundary layers.Subsequently,a transport equation for crossflow instability was developed in 2016,which is restricted to wing-like geometries.Then,in 2019,this model was extended to arbitrarily shaped geometries based on local variables.However,there are too many tedious functions and parameters in this version,and it can only be used for incompressible flows.Hence,in this paper,after a large amount of LST analyses and parameter optimization,an improved version for subsonic and transonic boundary layers is built.The present improved model is more robust and more concise,and it can be applied widely in aeronautical flows,which has great engineering application value and significance.An extensive validation study for this improved transition model will be performed. 展开更多
关键词 Boundary layer transition Crossflow instability Linear stability theory Transition Model Transonic flows
原文传递
Aeroacoustic and aerodynamic optimization of propeller blades 被引量:6
5
作者 Peixun YU Jiahui PENG +2 位作者 junqiang bai Xiao HAN Xiang SONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期826-839,共14页
It is of great significance to develop a high-efficiency and low-noise propeller optimization method for new-generation propeller aircraft design.Coupled with free form deformation method,dynamic mesh interpolation te... It is of great significance to develop a high-efficiency and low-noise propeller optimization method for new-generation propeller aircraft design.Coupled with free form deformation method,dynamic mesh interpolation technology,optimization algorithm,surrogate model,aerodynamic calculation and aeroacoustic prediction model module,the integrated aerodynamic and aeroacoustic design method of propeller is built.The optimization design for the six-blade propeller is carried out.The non-reduction in efficiency,thrust coefficient and the minimum of aerodynamic noise is treated as the optimization design objective.The spatial vorticity distribution of the propeller before and after the design is also analyzed by using unsteady computational fluid dynamics method.The results show that the optimized propeller can effectively reduce the aerodynamic noise level.The maximum total sound pressure level can be reduced by 5 dB without reducing its aerodynamic performance.The developed method has good application potential in low-noise optimization design of propeller and other rotating machinery. 展开更多
关键词 AEROACOUSTIC Aerodynamic Dynamic mesh interpolation technology Free form deformation method Optimization algorithm PROPELLER Sound pressure level Surrogate model
原文传递
Global aerodynamic design optimization based on data dimensionality reduction 被引量:7
6
作者 Yasong QIU junqiang bai +1 位作者 Nan LIU Chen WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第4期643-659,共17页
In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number... In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number of design variables are needed, the computational cost becomes prohibitive, and thus original global optimization strategies are required. To address this need, data dimensionality reduction method is combined with global optimization methods, thus forming a new global optimization system, aiming to improve the efficiency of conventional global optimization. The new optimization system involves applying Proper Orthogonal Decomposition(POD) in dimensionality reduction of design space while maintaining the generality of original design space. Besides, an acceleration approach for samples calculation in surrogate modeling is applied to reduce the computational time while providing sufficient accuracy. The optimizations of a transonic airfoil RAE2822 and the transonic wing ONERA M6 are performed to demonstrate the effectiveness of the proposed new optimization system. In both cases, we manage to reduce the number of design variables from 20 to 10 and from 42 to 20 respectively. The new design optimization system converges faster and it takes 1/3 of the total time of traditional optimization to converge to a better design, thus significantly reducing the overall optimization time and improving the efficiency of conventional global design optimization method. 展开更多
关键词 Aerodynamic shape design optimization Data dimensionality reduction Genetic algorithm Kriging surrogate model Proper orthogonal decomposition
原文传递
Transition prediction and sensitivity analysis for a natural laminar flow wing glove flight experiment 被引量:5
7
作者 Tihao YANG Hai ZHONG +3 位作者 Yifu CHEN Yayun SHI junqiang bai Feifei QIN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第8期34-47,共14页
Natural laminar flow technology can significantly reduce aircraft aerodynamic drag and has excellent technical appeal for transport aircraft development with high aerodynamic efficiency.Accurately and efficiently pred... Natural laminar flow technology can significantly reduce aircraft aerodynamic drag and has excellent technical appeal for transport aircraft development with high aerodynamic efficiency.Accurately and efficiently predicting the laminar-to-turbulent transition and revealing the maintenance mechanism of laminar flow in a transport aircraft’s flight environment are significant for developing natural laminar flow wings.In this research,we carry out natural laminar flow flight experiments with different Reynolds numbers and angles of attack.The critical N-factor is calibrated as 9.0 using flight experimental data and linear stability theory from a statistical perspective,which makes sure that the relative error of transition location is within 5%.We then implement a simplified e^(N) transition prediction method with a similar accuracy compared with linear stability theory.We compute the sensitivity information for the simplified eN method with an adjointbased method,using the automatic differentiation technique(ADjoint).The impact of Reynolds numbers and pressure distributions on TS waves is analyzed using the sensitivity information.Through the sensitivity analysis,we find that:favorable pressure gradients not only suppress the development of TS waves but also decrease their sensitivity to Reynolds numbers;there exist three special regions which are very sensitive to the pressure distribution,and the sensitivity decreases as the local favorable pressure gradient increases.The proposed sensitivity analysis method enables robust natural laminar flow wings design. 展开更多
关键词 e^(N)method Flight experiment Natural laminar flow Sensitivity analysis Transition prediction
原文传递
Interface flux reconstruction method based on optimized weight essentially non-oscillatory scheme 被引量:4
8
作者 Peixun YU junqiang bai +2 位作者 Hai YANG Song CHEN Kai PAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第5期1020-1029,共10页
Aimed at the computational aeroacoustics multi-scale problem of complex configurations discretized with multi-size mesh, the flux reconstruction method based on modified Weight Essentially Non-Oscillatory(WENO) sche... Aimed at the computational aeroacoustics multi-scale problem of complex configurations discretized with multi-size mesh, the flux reconstruction method based on modified Weight Essentially Non-Oscillatory(WENO) scheme is proposed at the interfaces of multi-block grids.With the idea of Dispersion-Relation-Preserving(DRP) scheme, different weight coefficients are obtained by optimization, so that it is in WENO schemes with various characteristics of dispersion and dissipation. On the basis, hybrid flux vector splitting method is utilized to intelligently judge the amplitude of the gap between grid interfaces. After the simulation and analysis of 1D convection equation with different initial conditions, modified WENO scheme is proved to be able to independently distinguish the gap amplitude and generate corresponding dissipation according to the grid resolution. Using the idea of flux reconstruction at grid interfaces, modified WENO scheme with increasing dissipation is applied at grid points, while DRP scheme with low dispersion and dissipation is applied at the inner part of grids. Moreover, Gauss impulse spread and periodic point sound source flow among three cylinders with multi-scale grids are carried out. The results show that the flux reconstruction method at grid interfaces is capable of dealing with Computational Aero Acoustics(CAA) multi-scale problems. 展开更多
关键词 Computational aeroacousties Dispersion-Relation-Preserving (DRP) scheme Flux reconstruction Modified Weight Essentially Non-Oscillatory (WENO)scheme Multi-size mesh
原文传递
Shock-stable flux scheme for predicting aerodynamic heating load of hypersonic airliners
9
作者 Feng Qu WeiXuan Kong +1 位作者 Di Sun junqiang bai 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2019年第8期83-92,共10页
In the design of a hypersonic airliner that can considerably shorten the flight time, how to accurately predict the vehicle's aerodynamic heating loads is of great significance. In this study, a new shock-stable f... In the design of a hypersonic airliner that can considerably shorten the flight time, how to accurately predict the vehicle's aerodynamic heating loads is of great significance. In this study, a new shock-stable flux scheme called the simple low dissipation advection upwind splitting method(SLAU)-M1 is proposed for the prediction of hypersonic aerodynamic heating load. Based on the construction of the SLAU scheme for low-speed simulations, SLAU-M1 improves the robustness of the mass flux against shock instability. After validating the code employed, several numerical test cases are conducted. The onedimensional(1D) sod shock tube case and the two-dimensional(2D) inviscid NACA0012 airfoil case show that SLAU-M1 features a high level of accuracy at both low and high speeds. To simulate the hypersonic viscous flow over a blunt cone, we adopt different aspect ratios(ARs) of cells near the shock. The results suggest that SLAU-M1 is much less sensitive to the AR of cells near the shock in predicting hypersonic aerodynamic heating loads. Moreover, the findings show that the theoretical value is considerably better than that of the other schemes. The hypersonic viscous flow over a 2D double ellipsoid case and that over the Hypersonic Flight Experiment vehicle case also indicate that SLAU-M1 exhibits a considerably high level of accuracy in hypersonic heating predictions. These properties suggest that SLAU-M1 promises to be widely used in the accurate prediction of the aerodynamic heating loads of hypersonic airliners. 展开更多
关键词 SLAU-M1 cell REYNOLDS number ASPECT ratio HYPERSONIC heating prediction COMPUTATIONAL fluid dynamics
原文传递
A hybrid multidimensional Riemann solver to couple self-similar method with MULTV method for complex flows
10
作者 Feng QU Di SUN +1 位作者 Junjie FU junqiang bai 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第7期29-38,共10页
Since proposed,the self-similarity variables based genuinely multidimensional Riemann solver is attracting more attentions due to its high resolution in multidimensional complex flows.However,it needs numerous logical... Since proposed,the self-similarity variables based genuinely multidimensional Riemann solver is attracting more attentions due to its high resolution in multidimensional complex flows.However,it needs numerous logical operations in supersonic cases,which limit the method’s applicability in engineering problems greatly.In order to overcome this defect,a hybrid multidimensional Riemann solver,called HMTHS(Hybrid of MulTv and multidimensional HLL scheme based on Self-similar structures),is proposed.It simulates the strongly interacting zone by adopting the MHLLES(Multidimensional Harten-Lax-van Leer-Eifeldt scheme based on Self-similar structures)scheme at subsonic speeds,which is with a high resolution by considering the second moment in the similarity variables.Also,it adopts the MULTV(Multidimensional Toro and Vasquez)scheme,which is with a high resolution in capturing discontinuities,to simulate the flux at supersonic speeds.Systematic numerical experiments,including both one-dimensional cases and twodimensional cases,are conducted.One-dimensional moving contact discontinuity case and sod shock tube case suggest that HMTHS can accurately capture one-dimensional expansion waves,shock waves,and linear contact discontinuities.Two-dimensional cases,such as the double Mach reflection case,the supersonic shock/boundary layer interaction case,the hypersonic flow over the cylinder case,and the hypersonic viscous flow over the double-ellipsoid case,indicate that the HMTHS scheme is with a high resolution in simulating multidimensional complex flows.Therefore,it is promising to be widely applied in both scholar and engineering areas. 展开更多
关键词 Complex flows Computational fluid dynamics MULTIDIMENSIONAL Riemann solver SELF-SIMILAR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部