Grain essential amino acid(EAA)levels contribute to rice nutritional quality.However,the molecular mechanisms underlying EAA accumulation and natural variation in rice grains remain unclear.Here we report the identifi...Grain essential amino acid(EAA)levels contribute to rice nutritional quality.However,the molecular mechanisms underlying EAA accumulation and natural variation in rice grains remain unclear.Here we report the identification of a previously unrecognized auxin influx carrier subfamily gene,OsAUX5,which encodes an amino acid transporter that functions in uptake of multiple amino acids.We identified an elite haplotype of Pro::OsAUX5^(Hap2) that enhances grain EAA accumulation without an apparent negative effect on agronomic traits.Natural variations of OsAUX5 occur in the cis elements of its promoter,which are differentially activated because of the different binding affinity between OsWRKY78 and the W-box,contributing to grain EAA variation among rice varieties.The two distinct haplotypes were shown to have originated from different Oryza rufipogon progenitors,which contributed to the divergence between japonica and indica.Introduction of the indica-type Pro::OsAUX5^(Hap2) genotype into japonica could significantly increase EAA levels,indicating that indica-type Pro::OsAUX5^(Hap2) can be utilized to increase grain EAAs of japonica varieties.Collectively,our study uncovers an WRKY78–OsAUX5-based regulatory mechanism controlling grain EAA accumulation and provides a potential target for breeding EAA-rich rice.展开更多
Despite rapid advances in fluorescence detectors over the past decade,the development of a highly stable,sensitive,and selective fluorescence platform for molecular recognition remains a considerable challenge.Here we...Despite rapid advances in fluorescence detectors over the past decade,the development of a highly stable,sensitive,and selective fluorescence platform for molecular recognition remains a considerable challenge.Here we report a stable carbazole-based sp2 carbon fluorescence covalent organic framework(COF)nanosheet,termed a JUC-557 nanosheet.Owing to the synergistic effect of aggregation-induced emission-and aggregation-caused quenching-based chromophores,the architecture of the JUC-577 shows high absolute quantum yields(up to 23.0%)in the solid state and when dispersed in various solvents as well as excellent sensing performance toward specific analytes,such as iodine(Ka:2.10×10^(5)M−1 and LOD:302 ppb),2,4,6-trinitrotoluene(Ka:4.38×10^(5)M−1 and LOD:129 ppb),and especially nitrobenzene(Ka:6.18×10^(6)M−1 and LOD:5 ppb)that is superior to that of fluorescence detection materials reported so far.Furthermore,the JUC-557 nanosheet preserves strong luminescence and sensitive recognition,even under harsh conditions,and allows trace detection of various analytes via a handheld UV lamp.These findings pave the way for developing stable ultrathin COF nanomaterials for highly sensitive and selective molecular detection.展开更多
基金supported by grants from the National Natural Science Foundation of China(32170267 and 32001528)the Key Research and Development Program of Hainan(ZDYF2020066)+3 种基金the Hainan Province Science and Technology Special Fund(ZDYF2022XDNY261)the Hainan Major Science and Technology Project(ZDKJ202002 and ZDKJ202001)the Hainan Academician Innovation Platform(HD-YSZX-202003)the Hainan Yazhou Bay Seed Laboratory(B21Y10902).
文摘Grain essential amino acid(EAA)levels contribute to rice nutritional quality.However,the molecular mechanisms underlying EAA accumulation and natural variation in rice grains remain unclear.Here we report the identification of a previously unrecognized auxin influx carrier subfamily gene,OsAUX5,which encodes an amino acid transporter that functions in uptake of multiple amino acids.We identified an elite haplotype of Pro::OsAUX5^(Hap2) that enhances grain EAA accumulation without an apparent negative effect on agronomic traits.Natural variations of OsAUX5 occur in the cis elements of its promoter,which are differentially activated because of the different binding affinity between OsWRKY78 and the W-box,contributing to grain EAA variation among rice varieties.The two distinct haplotypes were shown to have originated from different Oryza rufipogon progenitors,which contributed to the divergence between japonica and indica.Introduction of the indica-type Pro::OsAUX5^(Hap2) genotype into japonica could significantly increase EAA levels,indicating that indica-type Pro::OsAUX5^(Hap2) can be utilized to increase grain EAAs of japonica varieties.Collectively,our study uncovers an WRKY78–OsAUX5-based regulatory mechanism controlling grain EAA accumulation and provides a potential target for breeding EAA-rich rice.
基金supported by the National Natural Science Foundation of China(grant nos.22025504,21621001,21390394,22105082,21772123,21761142011,51502173,and 21702095)the 111 Project(grant nos.BP0719036 and B17020)+3 种基金the China Postdoctoral Science Foundation(grant nos.2020TQ0118 and 2020M681034)the program for the JLU Science and Technology Innovative Research Team,Shanghai Engineering Research Center of Green Energy Chemical Engineering(grant no.18DZ2254200)the 111 Innovation and Talent Recruitment Base on Photochemical and Energy Materials(grant no.D18020),the Shanghai Government(grant nos.21010503400 and 18JC1412900)the International Joint Laboratory of Resource Chemistry(IJLRC).
文摘Despite rapid advances in fluorescence detectors over the past decade,the development of a highly stable,sensitive,and selective fluorescence platform for molecular recognition remains a considerable challenge.Here we report a stable carbazole-based sp2 carbon fluorescence covalent organic framework(COF)nanosheet,termed a JUC-557 nanosheet.Owing to the synergistic effect of aggregation-induced emission-and aggregation-caused quenching-based chromophores,the architecture of the JUC-577 shows high absolute quantum yields(up to 23.0%)in the solid state and when dispersed in various solvents as well as excellent sensing performance toward specific analytes,such as iodine(Ka:2.10×10^(5)M−1 and LOD:302 ppb),2,4,6-trinitrotoluene(Ka:4.38×10^(5)M−1 and LOD:129 ppb),and especially nitrobenzene(Ka:6.18×10^(6)M−1 and LOD:5 ppb)that is superior to that of fluorescence detection materials reported so far.Furthermore,the JUC-557 nanosheet preserves strong luminescence and sensitive recognition,even under harsh conditions,and allows trace detection of various analytes via a handheld UV lamp.These findings pave the way for developing stable ultrathin COF nanomaterials for highly sensitive and selective molecular detection.