Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides(TMDs) materials and improving device performance to desired properties. However, the meth...Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides(TMDs) materials and improving device performance to desired properties. However, the methods in defect controlcurrently face challenges with overly large operational areas and a lack of precision in targeting specific defects. Therefore,we propose a new method for the precise and universal defect healing of TMD materials, integrating real-time imaging withscanning transmission electron microscopy (STEM). This method employs electron beam irradiation to stimulate the diffusionmigration of surface-adsorbed adatoms on TMD materials grown by low-temperature molecular beam epitaxy (MBE),and heal defects within the diffusion range. This approach covers defect repairs ranging from zero-dimensional vacancydefects to two-dimensional grain orientation alignment, demonstrating its universality in terms of the types of samples anddefects. These findings offer insights into the use of atomic-level focused electron beams at appropriate voltages in STEMfor defect healing, providing valuable experience for achieving atomic-level precise fabrication of TMD materials.展开更多
Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and hig...Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics.展开更多
Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel...Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.展开更多
There are two folds in this article. One fold is to characterize the Besov spaces of para-accretive type , which reduces to the classical Besov spaces when the para-accretive function is constant, by using a discrete ...There are two folds in this article. One fold is to characterize the Besov spaces of para-accretive type , which reduces to the classical Besov spaces when the para-accretive function is constant, by using a discrete Calderón-type reproducing formula and Plancherel-P?lya-type inequality associated to a para-accretive function b in Rn. The other is to show that a generalized singular integral operator T with extends to be bounded from for and , where ε is the regularity exponent of the kernel of T.展开更多
The nonlinear filter Boolean function of LILI-128 stream cipher generator is studied in this paper. First we measure the complexity of the stream ciphers sequence of LILI-128 stream cipher generator and obtain the sho...The nonlinear filter Boolean function of LILI-128 stream cipher generator is studied in this paper. First we measure the complexity of the stream ciphers sequence of LILI-128 stream cipher generator and obtain the shortest bit stream sequence reconstructed Boolean function of nonlinear filter in LILI-128 stream cipher generator. Then the least nonlinear Boolean function of generating stream cipher sequence is reconstructed by clusterig, nonlinear predictive and nonlinear synchronization from shortest bit stream sequence. We have verified the correctness of our reconstruction result by simulating the block diagram of Lili-128 keystream generator using our getting Boolean function and implement designers’ reference module of Lili-128 stream cipher public online, and two methods produce the same synchronous keystream sequence under same initial state, so that our research work proves that the nonlinear Boolean function of LILI-128 stream cipher generator is successfully broken.展开更多
In this Letter, we propose a broadband near-infrared(NIR) absorber based on the phase transition material VO2.By designing different arrangements of the VO2 square lattice at high and low temperatures on fused silica ...In this Letter, we propose a broadband near-infrared(NIR) absorber based on the phase transition material VO2.By designing different arrangements of the VO2 square lattice at high and low temperatures on fused silica substrates, the absorption rate reaches more than 90% in the entire 1.4–2.4 μm range. Using a finite-difference time-domain simulation method and thermal field analysis, the results prove that the absorber is polarizationindependent and has wide-angle absorption for incident angles of 0°–70°. The proposed absorber has a smoother absorption curve and is superior in performance, and it has many application prospects in remote sensing geology.展开更多
During the flight of the aircraft,the pilot must repeat the instruction sent by the controller,and the controller must further confirm these read-backs,in this way to further ensure the safety of air transportation.Ho...During the flight of the aircraft,the pilot must repeat the instruction sent by the controller,and the controller must further confirm these read-backs,in this way to further ensure the safety of air transportation.However,fatigue,tension,negligence and other human factors may prevent the controller from realizing read-back errors in time,which is a huge hidden danger for the safety of civil aviation transportation.This paper proposes a novel strategy to implement fine-grained semantic verification of radiotelephony read-backs by introducing interaction layer and attention mechanism at the output of BiLSTM model.Compared with the traditional twochannel verification strategy,the interaction layer is added to obtain fine-grained semantic matching relation representation,rather than connecting the BiLSTM output vectors to obtain the overall semantic representation of the sentence.And by adding attention layer,the new strategy can capture the potential semantic relation between the read-backs and the instructions,which is applicable to non-standard diction and abbreviated read-backs in real radiotelephony communications.Extensive experiments are conducted and the results show that the proposed new strategy is more effective than the traditional method for read-backs checking,and the average test accuracy of the new strategy based on the Chinese ATC radiotelephony read-backs corpus can reach 93.03%.展开更多
基金the Beijing Natural Science Foundation(Grant Nos.JQ24010 and Z220020)the Fundamental Research Funds for the Central Universities,and the National Natural Science Foundation of China(Grant No.52273279)Project supported by the Electron Microscopy Laboratory of Peking University,China for the use of Nion U-HERMES200 scanning transmission electron microscopy.We thank Materials Processing and Analysis Center,Peking University,for assistance with TEM characterization.The electron microscopy work was through a user project at Center of Oak Ridge National Laboratory(ORNL)for Nanophase Materials Sciences(CNMS),which is a DOE Office of Science User Facility.
文摘Minimizing disorder and defects is crucial for realizing the full potential of two-dimensional transition metal dichalcogenides(TMDs) materials and improving device performance to desired properties. However, the methods in defect controlcurrently face challenges with overly large operational areas and a lack of precision in targeting specific defects. Therefore,we propose a new method for the precise and universal defect healing of TMD materials, integrating real-time imaging withscanning transmission electron microscopy (STEM). This method employs electron beam irradiation to stimulate the diffusionmigration of surface-adsorbed adatoms on TMD materials grown by low-temperature molecular beam epitaxy (MBE),and heal defects within the diffusion range. This approach covers defect repairs ranging from zero-dimensional vacancydefects to two-dimensional grain orientation alignment, demonstrating its universality in terms of the types of samples anddefects. These findings offer insights into the use of atomic-level focused electron beams at appropriate voltages in STEMfor defect healing, providing valuable experience for achieving atomic-level precise fabrication of TMD materials.
基金the National Natural Science Foundation of China (52273083, 51903145)Key Research and Development Project of Shaanxi Province (2023-YBGY-476)+1 种基金Natural Science Foundation of Chongqing,China (CSTB2023NSCQ-MSX0691)National College Students Innovation and Entrepreneurship Training Program (202310699172)
文摘Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics.
基金This work was supported by the National Natural Science Foundation of China(52373306,52172233,and 51832004)the Natural Science Foundation of Hubei Province(2023AFA053)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021CXLH0007).
文摘Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.
文摘There are two folds in this article. One fold is to characterize the Besov spaces of para-accretive type , which reduces to the classical Besov spaces when the para-accretive function is constant, by using a discrete Calderón-type reproducing formula and Plancherel-P?lya-type inequality associated to a para-accretive function b in Rn. The other is to show that a generalized singular integral operator T with extends to be bounded from for and , where ε is the regularity exponent of the kernel of T.
文摘The nonlinear filter Boolean function of LILI-128 stream cipher generator is studied in this paper. First we measure the complexity of the stream ciphers sequence of LILI-128 stream cipher generator and obtain the shortest bit stream sequence reconstructed Boolean function of nonlinear filter in LILI-128 stream cipher generator. Then the least nonlinear Boolean function of generating stream cipher sequence is reconstructed by clusterig, nonlinear predictive and nonlinear synchronization from shortest bit stream sequence. We have verified the correctness of our reconstruction result by simulating the block diagram of Lili-128 keystream generator using our getting Boolean function and implement designers’ reference module of Lili-128 stream cipher public online, and two methods produce the same synchronous keystream sequence under same initial state, so that our research work proves that the nonlinear Boolean function of LILI-128 stream cipher generator is successfully broken.
基金the National High Technology Research and Development Program of China(No. 2006AA03Z348)the Foundation for Key Program of Ministry of Education,China (No. 207033)+1 种基金the Key Science and Technology Research Project of Shanghai Committee,China (No. 10ZZ94)the Shanghai Talent Leading Plan,China (No. 2011-026)。
文摘In this Letter, we propose a broadband near-infrared(NIR) absorber based on the phase transition material VO2.By designing different arrangements of the VO2 square lattice at high and low temperatures on fused silica substrates, the absorption rate reaches more than 90% in the entire 1.4–2.4 μm range. Using a finite-difference time-domain simulation method and thermal field analysis, the results prove that the absorber is polarizationindependent and has wide-angle absorption for incident angles of 0°–70°. The proposed absorber has a smoother absorption curve and is superior in performance, and it has many application prospects in remote sensing geology.
基金supported by Tianjin Natural Science Foundation of China(“Research on the Key Issues of Situational Cognition and Intelligent Early-warning for Civil Aviation Radiotelephony Communication”)the Fundamental Research Funds for the Central Universities,China(No.3122019058)the Project Funds for Civil Aviation,China(No.H01420210285).
文摘During the flight of the aircraft,the pilot must repeat the instruction sent by the controller,and the controller must further confirm these read-backs,in this way to further ensure the safety of air transportation.However,fatigue,tension,negligence and other human factors may prevent the controller from realizing read-back errors in time,which is a huge hidden danger for the safety of civil aviation transportation.This paper proposes a novel strategy to implement fine-grained semantic verification of radiotelephony read-backs by introducing interaction layer and attention mechanism at the output of BiLSTM model.Compared with the traditional twochannel verification strategy,the interaction layer is added to obtain fine-grained semantic matching relation representation,rather than connecting the BiLSTM output vectors to obtain the overall semantic representation of the sentence.And by adding attention layer,the new strategy can capture the potential semantic relation between the read-backs and the instructions,which is applicable to non-standard diction and abbreviated read-backs in real radiotelephony communications.Extensive experiments are conducted and the results show that the proposed new strategy is more effective than the traditional method for read-backs checking,and the average test accuracy of the new strategy based on the Chinese ATC radiotelephony read-backs corpus can reach 93.03%.