The responses of cement mortar specimens of different dimensions under compression and tension were calculated based on the discrete element method with the modified-rigid-body-spring concrete model,in which the mecha...The responses of cement mortar specimens of different dimensions under compression and tension were calculated based on the discrete element method with the modified-rigid-body-spring concrete model,in which the mechanical parameters derived from macro-scale material tests were applied directly to the mortar elements.By comparing the calculated results with those predicted by the Carpinteri andWeibull size effects laws,a series of formulas to convert the macro-scale mechanical parameters of mortar and interface to those at the meso-scale were proposed through a fitting analysis.Based on the proposed formulas,numerical simulation of axial compressive and tensile failure processes of concrete and cement mortar materials,respectively were conducted.The calculated results were a good match with the test results.展开更多
基金The financial support from the National Natural Science Foundation of China(Grant No.50978191)is sincerely acknowledged by the authors.
文摘The responses of cement mortar specimens of different dimensions under compression and tension were calculated based on the discrete element method with the modified-rigid-body-spring concrete model,in which the mechanical parameters derived from macro-scale material tests were applied directly to the mortar elements.By comparing the calculated results with those predicted by the Carpinteri andWeibull size effects laws,a series of formulas to convert the macro-scale mechanical parameters of mortar and interface to those at the meso-scale were proposed through a fitting analysis.Based on the proposed formulas,numerical simulation of axial compressive and tensile failure processes of concrete and cement mortar materials,respectively were conducted.The calculated results were a good match with the test results.