期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A New System to Evaluate Comprehensive Performance of Hard-Rock Tunnel Boring Machine Cutterheads 被引量:1
1
作者 Ye Zhu Wei Sun +1 位作者 junzhou huo Zhichao Meng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期72-84,共13页
The accurate performance evaluation of a cutterhead is essential to improving cutterhead structure design and predicting project cost. Through extensive research, this paper evaluates the performance of a tunnel borin... The accurate performance evaluation of a cutterhead is essential to improving cutterhead structure design and predicting project cost. Through extensive research, this paper evaluates the performance of a tunnel boring machine(TBM) cutterhead for cutting ability and slagging ability. This paper propose cutting efficiency, stability, and continuity of slagging as the evaluation indexes of comprehensive cutterhead performance. On the basis of research of true TBM engineering applications, this paper proposes a calculation method for each index. A slagging efficiency index with a ratio of the maximum di erence between the slagging amount and average slagging is established. And a slagging stability index with a ratio of the maximum slagging fluctuation and average slagging is presented. Meanwhile, a cutting efficiency index by the weighed average value of multistage rock fragmentation of a cutter’s specific energy is established. The Robbins and China Railway Construction Corporation(CRCC) cutterheads are evaluated. The results show that under the same thrust and torque, the slagging stability of the CRCC scheme is worse, but the slagging continuity of the CRCC scheme is better. The cutting ability index shows that the CRCC cutterhead is more efficient. 展开更多
关键词 Evaluation of cutterhead Cutting ability Slagging ability Rock fragmentation load
下载PDF
Evaluation Method for Tunneling Stability of TBM Cutterhead
2
作者 Zhaohui Xu Ye Er-ken∙Zha Mu-ti +3 位作者 Lin Xue Fengtao Wang Jing Chen junzhou huo 《World Journal of Engineering and Technology》 2019年第2期1-9,共9页
In the process of tunneling of tunnel boring machine (TBM), different geological conditions often correspond to different working conditions, and the randomness of geological conditions also causes the order of occurr... In the process of tunneling of tunnel boring machine (TBM), different geological conditions often correspond to different working conditions, and the randomness of geological conditions also causes the order of occurrence of each working condition to be different. Under the conversion of different working conditions, this makes the vibration of different types of cutterheads different. How to choose the appropriate type of cutterhead according to different geological conditions is very important for saving engineering cost and increasing cutterhead life. In view of the above situation, this paper proposes a stability evaluation method during the TBM tunneling process to select the appropriate cutterhead type. Firstly, the corresponding relationship between geology and working conditions is established according to different geological conditions, and the input loads corresponding to geological conditions are obtained. Then, it is substituted into the dynamic model of the cutterhead system, the vibration response boundaries of each degree of freedom are obtained by solving. And the average value of the maximum boundary amplitude of each degree of freedom is taken to represent the extreme vibration of the cutterhead under the corresponding working conditions. Finally, by comparing the fluctuation of the ultimate vibration amplitude of each type of cutterhead in the process of working condition conversion, the results are as follows: when the transition between homogeneous strata and composite strata is normal and there is no large turning and deviation correction, the vibration response of the two-part cutterhead is the smallest, and the two-part cutterhead is the best choice. Otherwise, the five-part cutterhead is the best choice, while the stability of the integrated cutterhead is the worst. 展开更多
关键词 Cutterhead Working Condition Conversion STABILITY Type Selection of Cutterhead
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部