期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
In Situ Preparation and Analysis of Bimetal Co?doped Mesoporous Graphitic Carbon Nitride with Enhanced Photocatalytic Activity
1
作者 Wanbao Wu Zhaohui Ruan +6 位作者 junzhuo li Yudong li Yanqiu Jiang Xianzhu Xu Defeng li Yuan Yuan Kaifeng lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期175-190,共16页
A novel photocatalyst of mesoporous graphitic carbon nitride(g-C_3N_4) co-doped with Co and Mo(Co/Mo-MCN) has been one-pot synthesized via a simple template-free method; cobalt chloride and molybdenum disulfide were u... A novel photocatalyst of mesoporous graphitic carbon nitride(g-C_3N_4) co-doped with Co and Mo(Co/Mo-MCN) has been one-pot synthesized via a simple template-free method; cobalt chloride and molybdenum disulfide were used as the Co and Mo sources, respectively. The characterization results evidently indicate that molybdenum disulfide functions as Mo sources to incorporate Mo atoms in the framework of g-C_3N_4 and as a catalyst for promoting the decomposition of g-C_3N_4, resulting in the creation of mesopores. The obtained Co/Mo-MCN exhibited a significant enhancement of the photocatalytic activity in H_2 evolution(8.6 times) and Rhodamine B degradation(10.1 times) under visible light irradiation compared to pristine g-C_3N_4. Furthermore, density functional theory calculations were applied to further understand the photocatalytic enhancement mechanism of the optical absorption properties at the atomic level after Co-or Mo-doping. Finite-di erence time-domain simulations were performed to evaluate the e ect of the mesopore structures on the light absorption capability. The results revealed that both the bimetal doping and the mesoporous architectures resulted in an enhanced optical absorption; this phenomenon was considered to have played a critical role in the improvement in the photocatalytic performance of Co/Mo-MCN. 展开更多
关键词 CO-DOPED g-C3N4 Porous g-C3N4 Photocatalysis Optical simulation Light absorption intensity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部