期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
Lorenz吸引子的微观结构
被引量:
1
1
作者
薛禹胜
Q.H
.w
u
+2 位作者
周海强
檀斌
k.w.lau
《非线性动力学学报》
2003年第1期1-12,共12页
轨迹保稳降维是一种分析高维非线性系统稳定性的方法。其要点是先在高维空问中求取轨迹;再将F轨迹映射为n-1个R^2映像,并在变换中严格保持感兴趣的稳定特性:分析各映像轨迹的稳定性:最后聚合为原轨迹特性的描述。本文按此分析Loren...
轨迹保稳降维是一种分析高维非线性系统稳定性的方法。其要点是先在高维空问中求取轨迹;再将F轨迹映射为n-1个R^2映像,并在变换中严格保持感兴趣的稳定特性:分析各映像轨迹的稳定性:最后聚合为原轨迹特性的描述。本文按此分析Lorenz吸引子的结构稳定性。例如,将其中的z变量处理为时变参量后,(x,y)子系统成为时变的线性2维系统,可得分岔集{zcr}及奇点特性沿z轴的变化规律。故对于特定的轨迹(x,y,z),可将其在各坐标平面上的投影轨迹分成短线段的有序队列,各相邻线段对应于特性不同的奇点,从而揭示Lorenz吸引子全局分岔的精细结构及其通往高维混沌的道路。
展开更多
关键词
Lorenz吸引子
微观结构
高维非线性系统
结构稳定性
轨迹保稳降维
混沌
全局分岔
下载PDF
职称材料
题名
Lorenz吸引子的微观结构
被引量:
1
1
作者
薛禹胜
Q.H
.w
u
周海强
檀斌
k.w.lau
机构
电力自动化研究院南京.
Liverpool大学英国
出处
《非线性动力学学报》
2003年第1期1-12,共12页
文摘
轨迹保稳降维是一种分析高维非线性系统稳定性的方法。其要点是先在高维空问中求取轨迹;再将F轨迹映射为n-1个R^2映像,并在变换中严格保持感兴趣的稳定特性:分析各映像轨迹的稳定性:最后聚合为原轨迹特性的描述。本文按此分析Lorenz吸引子的结构稳定性。例如,将其中的z变量处理为时变参量后,(x,y)子系统成为时变的线性2维系统,可得分岔集{zcr}及奇点特性沿z轴的变化规律。故对于特定的轨迹(x,y,z),可将其在各坐标平面上的投影轨迹分成短线段的有序队列,各相邻线段对应于特性不同的奇点,从而揭示Lorenz吸引子全局分岔的精细结构及其通往高维混沌的道路。
关键词
Lorenz吸引子
微观结构
高维非线性系统
结构稳定性
轨迹保稳降维
混沌
全局分岔
分类号
O415.5 [理学—理论物理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
Lorenz吸引子的微观结构
薛禹胜
Q.H
.w
u
周海强
檀斌
k.w.lau
《非线性动力学学报》
2003
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部