This study demonstrated a solvothermal method of growth of three different morphologies of zinc oxide nanoparticles (ZnO NPs): i) flower-like nanorod and nanoflakes, ii) assembled hierarchical structure, and iii...This study demonstrated a solvothermal method of growth of three different morphologies of zinc oxide nanoparticles (ZnO NPs): i) flower-like nanorod and nanoflakes, ii) assembled hierarchical structure, and iii) nano granule. Oleic acid (C18H3402), gluconic acid (C6H1207) and tween 80 (C64H124026) were used as surfactant/capping/reducing agent for the formation of different morphologies of nanoparticles. The as-synthesized ZnO NPs were characterized by different physicochemical techniques such as UV-vis (UV-vis) spectroscopy, X-ray diffraction (XRD), fourier transform infrared spectroscopy (FFIR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) analysis and dynamic light scattering (DLS) studies. Further, the antioxidant and antimicrobial activity of these nanostructures was evaluated. The antioxidant activity of these nanostructures was assessed via 2,2-diphenyl,1-1 picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and H202 free radical scavenging activity. The in vitro antimicrobial activity of the obtained nanostructures was demonstrated against both gram negative (Escherichia coil) and gram positive (Staphylococcus aureus) bacterial genera. This study revealed antioxidant and antimicrobial properties of different structures ofZnO NPs suggesting their biomedical and industrial applications.展开更多
文摘This study demonstrated a solvothermal method of growth of three different morphologies of zinc oxide nanoparticles (ZnO NPs): i) flower-like nanorod and nanoflakes, ii) assembled hierarchical structure, and iii) nano granule. Oleic acid (C18H3402), gluconic acid (C6H1207) and tween 80 (C64H124026) were used as surfactant/capping/reducing agent for the formation of different morphologies of nanoparticles. The as-synthesized ZnO NPs were characterized by different physicochemical techniques such as UV-vis (UV-vis) spectroscopy, X-ray diffraction (XRD), fourier transform infrared spectroscopy (FFIR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) analysis and dynamic light scattering (DLS) studies. Further, the antioxidant and antimicrobial activity of these nanostructures was evaluated. The antioxidant activity of these nanostructures was assessed via 2,2-diphenyl,1-1 picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and H202 free radical scavenging activity. The in vitro antimicrobial activity of the obtained nanostructures was demonstrated against both gram negative (Escherichia coil) and gram positive (Staphylococcus aureus) bacterial genera. This study revealed antioxidant and antimicrobial properties of different structures ofZnO NPs suggesting their biomedical and industrial applications.