Random distribution of sensor nodes in large scale network leads redundant nodes in the application field. Sensor nodes are with irreplaceable battery in nature, which drains the energy due to repeated collection...Random distribution of sensor nodes in large scale network leads redundant nodes in the application field. Sensor nodes are with irreplaceable battery in nature, which drains the energy due to repeated collection of data and decreases network lifetime. Scheduling algorithms are the one way of addressing this issue. In proposed method, an optimized sleep scheduling used to enhance the network lifetime. While using the scheduling algorithm, the target coverage and data collection must be maintained throughout the network. In-network, aggregation method also used to remove the unwanted information in the collected data in level. Modified clustering algorithm highlights three cluster heads in each cluster which are separated by minimum distance between them. The simulation results show the 20% improvement in network lifetime, 25% improvement in throughput and 30% improvement in end to end delay.展开更多
文摘Random distribution of sensor nodes in large scale network leads redundant nodes in the application field. Sensor nodes are with irreplaceable battery in nature, which drains the energy due to repeated collection of data and decreases network lifetime. Scheduling algorithms are the one way of addressing this issue. In proposed method, an optimized sleep scheduling used to enhance the network lifetime. While using the scheduling algorithm, the target coverage and data collection must be maintained throughout the network. In-network, aggregation method also used to remove the unwanted information in the collected data in level. Modified clustering algorithm highlights three cluster heads in each cluster which are separated by minimum distance between them. The simulation results show the 20% improvement in network lifetime, 25% improvement in throughput and 30% improvement in end to end delay.