In this paper, mathematical models of biofilm mixtures of n-butanol biofilters were discussed. The model is based on the mass transfer in the biofilm interface and chemical oxidation in the biofilm phase and gas phase...In this paper, mathematical models of biofilm mixtures of n-butanol biofilters were discussed. The model is based on the mass transfer in the biofilm interface and chemical oxidation in the biofilm phase and gas phase. An approximate analytical expression of concentration profiles of n-butanol in the biofilm phase and gas phase has been derived using the homotopy perturbation method and hyperbolic function method for all possible values of parameters. Furthermore, in this work, the numerical simulation of the problem is also reported using the Matlab program. Good agreement between the analytical and numerical results is noted. Graphical results are presented and discussed quantitatively to illustrate the solution. The analytical results will be useful in finding the yields of biomass and oxygen consumption, the specific biomass surface area, activation energy and saturation constant for the Michaelis-Menten kinetics.展开更多
文摘In this paper, mathematical models of biofilm mixtures of n-butanol biofilters were discussed. The model is based on the mass transfer in the biofilm interface and chemical oxidation in the biofilm phase and gas phase. An approximate analytical expression of concentration profiles of n-butanol in the biofilm phase and gas phase has been derived using the homotopy perturbation method and hyperbolic function method for all possible values of parameters. Furthermore, in this work, the numerical simulation of the problem is also reported using the Matlab program. Good agreement between the analytical and numerical results is noted. Graphical results are presented and discussed quantitatively to illustrate the solution. The analytical results will be useful in finding the yields of biomass and oxygen consumption, the specific biomass surface area, activation energy and saturation constant for the Michaelis-Menten kinetics.