期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Observation and modelling of stimulated Raman scattering driven by an optically smoothed laser beam in experimental conditions relevant for shock ignition 被引量:1
1
作者 G.Cristoforetti S.Hüller +20 位作者 P.Koester L.Antonelli S.Atzeni F.Baffigi D.Batani C.Baird N.Booth M.Galimberti k.glize A.Héron M.Khan P.Loiseau D.Mancelli M.Notley P.Oliveira O.Renner M.Smid A.Schiavi G.Tran N.C.Woolsey L.A.Gizzi 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2021年第4期160-178,共19页
We report results and modelling of an experiment performed at the Target Area West Vulcan laser facility,aimed at investigating laser±plasma interaction in conditions that are of interest for the shock ignition s... We report results and modelling of an experiment performed at the Target Area West Vulcan laser facility,aimed at investigating laser±plasma interaction in conditions that are of interest for the shock ignition scheme in inertial confinement fusion(ICF),that is,laser intensity higher than 10^(16) W/cm^(2) impinging on a hot(T>1 keV),inhomogeneous and long scalelength pre-formed plasma.Measurements show a significant stimulated Raman scattering(SRS)backscattering(;%-20%of laser energy)driven at low plasma densities and no signatures of two-plasmon decay(TPD)/SRS driven at the quarter critical density region.Results are satisfactorily reproduced by an analytical model accounting for the convective SRS growth in independent laser speckles,in conditions where the reflectivity is dominated by the contribution from the most intense speckles,where SRS becomes saturated.Analytical and kinetic simulations well reproduce the onset of SRS at low plasma densities in a regime strongly affected by non-linear Landau damping and by filamentation of the most intense laser speckles.The absence of TPD/SRS at higher densities is explained by pump depletion and plasma smoothing driven by filamentation.The prevalence of laser coupling in the low-density profile justifies the low temperature measured for hot electrons(7-12 keV),which is well reproduced by numerical simulations. 展开更多
关键词 plasma simulations shock ignition stimulated Raman scattering inertial confinement fusion laser-plasma interaction
原文传递
Proton deflectometry of a capacitor coil target along two axes
2
作者 P.Bradford M.P.Read +16 位作者 M.Ehret L.Antonelli M.Khan N.Booth k.glize D.Carroll R.J.Clarke R.Heathcote S.Ryazantsev S.Pikuz C.Spindloe J.D.Moody B.B.Pollock V.T.Tikhonchuk C.P.Ridgers J.J.Santos N.C.Woolsey 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2020年第2期10-18,共9页
A developing application of laser-driven currents is the generation of magnetic fields of picosecond-nanosecond duration with magnitudes exceeding B=10 T.Single-loop and helical coil targets can direct laser-driven di... A developing application of laser-driven currents is the generation of magnetic fields of picosecond-nanosecond duration with magnitudes exceeding B=10 T.Single-loop and helical coil targets can direct laser-driven discharge currents along wires to generate spatially uniform,quasi-static magnetic fields on the millimetre scale.Here,we present proton deflectometry across two axes of a single-loop coil ranging from 1 to 2 mm in diameter.Comparison with proton tracking simulations shows that measured magnetic fields are the result of kiloampere currents in the coil and electric charges distributed around the coil target.Using this dual-axis platform for proton deflectometry,robust measurements can be made of the evolution of magnetic fields in a capacitor coil target. 展开更多
关键词 strong magnetic field laser-driven coil targets laser-plasma interaction proton deflectometry laboratory astrophysics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部