Developing high-performing oxygen evolution reaction(OER)electrocatalysts under high-current operation conditions is critical for future commercial applications of alkaline water electrolysis for clean energy generati...Developing high-performing oxygen evolution reaction(OER)electrocatalysts under high-current operation conditions is critical for future commercial applications of alkaline water electrolysis for clean energy generation.Herein,we prepared a three-dimensional(3D)bimetallic oxyhydroxide hybrid grown on a Ni foam(NiFeOOH/NF)prepared by immersing Ni foam(NF)into Fe(NO_(3))_(3) solution.In this unique 3D structure,the NiFeOOH/NF hybrid was composed of crystalline Ni(OH)_(2) and amorphous FeOOH evenly grown on the NF surface.As a bimetallic oxyhydroxide electrocatalyst,the NiFeOOH/NF hybrid exhibited excellent catalytic activity,surpassing not only the other reported Ni–Fe based electrocatalysts,but also the commercial Ir/C catalyst.In situ electrochemical Raman spectroscopy demonstrated the active FeOOH and NiOOH phases involved in the OER process.Profiting from the synergy of Fe and Ni catalytic sites,the NiFeOOH/NF hybrid delivered an outstanding OER performance under challenging industrial conditions in a 10.0 mol·L^(-1) KOH electrolyte at 80℃,requiring potentials as small as 1.47 and 1.51 V to achieve the super-high catalytic current densities of 100 and 500mA∙cm^(-2),respectively.展开更多
基金Y.Hou expresses appreciation for the assistance of the National Natural Science Foundation of China(21922811,21878270,and 21961160742)the Zhejiang Provincial Natural Science Foundation of China(LR19B060002)+2 种基金the Fundamental Research Funds for the Central Universities(2020XZZX002-09)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2019R01006)the Startup Foundation for Hundred-Talent Program of Zhejiang University.K.Ostrikov acknowledges partial assistance from the Australian Research Council.
文摘Developing high-performing oxygen evolution reaction(OER)electrocatalysts under high-current operation conditions is critical for future commercial applications of alkaline water electrolysis for clean energy generation.Herein,we prepared a three-dimensional(3D)bimetallic oxyhydroxide hybrid grown on a Ni foam(NiFeOOH/NF)prepared by immersing Ni foam(NF)into Fe(NO_(3))_(3) solution.In this unique 3D structure,the NiFeOOH/NF hybrid was composed of crystalline Ni(OH)_(2) and amorphous FeOOH evenly grown on the NF surface.As a bimetallic oxyhydroxide electrocatalyst,the NiFeOOH/NF hybrid exhibited excellent catalytic activity,surpassing not only the other reported Ni–Fe based electrocatalysts,but also the commercial Ir/C catalyst.In situ electrochemical Raman spectroscopy demonstrated the active FeOOH and NiOOH phases involved in the OER process.Profiting from the synergy of Fe and Ni catalytic sites,the NiFeOOH/NF hybrid delivered an outstanding OER performance under challenging industrial conditions in a 10.0 mol·L^(-1) KOH electrolyte at 80℃,requiring potentials as small as 1.47 and 1.51 V to achieve the super-high catalytic current densities of 100 and 500mA∙cm^(-2),respectively.