Reaction of Na2CO3, Pr6O11 and H3PO4 gave the sodium praseodymium polyphosphate NaPr(PO3)4.The title compound crystallized in the monoclinic P21/n space group with a=0.9965(4) nm, b=1.31437(4) nm, c=0.72271(3)...Reaction of Na2CO3, Pr6O11 and H3PO4 gave the sodium praseodymium polyphosphate NaPr(PO3)4.The title compound crystallized in the monoclinic P21/n space group with a=0.9965(4) nm, b=1.31437(4) nm, c=0.72271(3) nm, β=90.429(3)°, V=0.9465(4) nm3, Z=4, R=0.0493 and wR=0.1266 for 1855 independent reflections.The structure of NaPr(PO3)4 consisted of PrO8 polyhedra sharing oxygen atoms with phosphoric group PO4 to form a three-dimensional framework, delimiting intersecting tunnels in which the sodium ion was located.Each Na+ ion was bonded to seven oxygen atoms.展开更多
In this article,varied praseodymium polyphosphate hosts:MI(Li,Na K)Pr(PO3)4 microcrystals and LiLa1-xPrx(PO3)4(x = 0.01 ^-1)nanocrystals were successfully synthesized by the flux method and the coprecipitation techniq...In this article,varied praseodymium polyphosphate hosts:MI(Li,Na K)Pr(PO3)4 microcrystals and LiLa1-xPrx(PO3)4(x = 0.01 ^-1)nanocrystals were successfully synthesized by the flux method and the coprecipitation technique,respectively.The size of stoichiometric nanocrystals of LiPr(PO3)4 was tuned by the te mpe rature of thermal treatment in range of 35-145 nm.In order to dete rmine the most suitable material for the non-contact optical thermometric applications,the temperature sensing measurements were carried out by using luminescence intensity ratio(LIR)of emission bands corresponding to the ^3 P1→ ^3H5 and ^3P0→ ^3 H5 electronic transitions of Pr3+ ions into the 123-423 K temperature range.The influence of the host material composition of MⅠ(Li,Na,K)Pr(PO3)4 microcrystals on the sensitivity of luminescent thermometers was studied.It is found that the sensitivity of lithium praseodymium polyphosphate is the highest of all micropowders under investigation.Moreover,it is found that the nanocrystals reveal much higher relative sensitivity in respect to the microcrystalline counterparts.The highest sensitivity of LIR temperature sensing is found for LiPr(PO3)4 nanocrystals(35 nm grain size)in the whole temperature range,reaching 0.283%/K at 164 K.The impact of the average grain size on the sensitivity of LIR based thermometers of LiPr(PO3)4 nanocrystals was investigated.It is found that the reduction of the grain size from 145 to 35 nm results in the enhancement of the relative sensitivity from0.156 to 0.240%/K at 223 K.Additionally it is found that the high dopant concentration possesses favorable influence on the relative sensitivity of LiLa1-xPrx(PO3)4 nanocrystalline luminescent thermometers.展开更多
基金supported by the Ministry of Higher Education,Scientific Research and Technology of Tunisia
文摘Reaction of Na2CO3, Pr6O11 and H3PO4 gave the sodium praseodymium polyphosphate NaPr(PO3)4.The title compound crystallized in the monoclinic P21/n space group with a=0.9965(4) nm, b=1.31437(4) nm, c=0.72271(3) nm, β=90.429(3)°, V=0.9465(4) nm3, Z=4, R=0.0493 and wR=0.1266 for 1855 independent reflections.The structure of NaPr(PO3)4 consisted of PrO8 polyhedra sharing oxygen atoms with phosphoric group PO4 to form a three-dimensional framework, delimiting intersecting tunnels in which the sodium ion was located.Each Na+ ion was bonded to seven oxygen atoms.
基金Project supported by the Ministry of Higher Education and Scientific Research in Tunisia(99/UR/07-03)
文摘In this article,varied praseodymium polyphosphate hosts:MI(Li,Na K)Pr(PO3)4 microcrystals and LiLa1-xPrx(PO3)4(x = 0.01 ^-1)nanocrystals were successfully synthesized by the flux method and the coprecipitation technique,respectively.The size of stoichiometric nanocrystals of LiPr(PO3)4 was tuned by the te mpe rature of thermal treatment in range of 35-145 nm.In order to dete rmine the most suitable material for the non-contact optical thermometric applications,the temperature sensing measurements were carried out by using luminescence intensity ratio(LIR)of emission bands corresponding to the ^3 P1→ ^3H5 and ^3P0→ ^3 H5 electronic transitions of Pr3+ ions into the 123-423 K temperature range.The influence of the host material composition of MⅠ(Li,Na,K)Pr(PO3)4 microcrystals on the sensitivity of luminescent thermometers was studied.It is found that the sensitivity of lithium praseodymium polyphosphate is the highest of all micropowders under investigation.Moreover,it is found that the nanocrystals reveal much higher relative sensitivity in respect to the microcrystalline counterparts.The highest sensitivity of LIR temperature sensing is found for LiPr(PO3)4 nanocrystals(35 nm grain size)in the whole temperature range,reaching 0.283%/K at 164 K.The impact of the average grain size on the sensitivity of LIR based thermometers of LiPr(PO3)4 nanocrystals was investigated.It is found that the reduction of the grain size from 145 to 35 nm results in the enhancement of the relative sensitivity from0.156 to 0.240%/K at 223 K.Additionally it is found that the high dopant concentration possesses favorable influence on the relative sensitivity of LiLa1-xPrx(PO3)4 nanocrystalline luminescent thermometers.