期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Development of new diagnostics based on LiF detector for pump-probe experiments
1
作者 T.Pikuz A.Faenov +25 位作者 NOzaki T.Matsuoka B.Albertazzi N.J.Hartley K.Miyanishi k.katagiri S.Matsuyama K.Yamauchi H.Habara Y.Inubushi T.Togashi H.Yumoto H.Ohashi Y.Tange T.Yabuuchi M.Yabashi A.N.Grum-Grzhimailo A.Casner I.Skobelev S.Makarov S.Pikuz G.Rigon M.Koenig K.A.Tanaka T.Ishikawa R.Kodama 《Matter and Radiation at Extremes》 SCIE EI CAS 2018年第4期197-206,共10页
We present new diagnostics for use in optical laser pump-X-ray Free Electron Laser(XFEL)probe experiments to monitor dimensions,intensity profile and focusability of the XFEL beam and to control initial quality and ho... We present new diagnostics for use in optical laser pump-X-ray Free Electron Laser(XFEL)probe experiments to monitor dimensions,intensity profile and focusability of the XFEL beam and to control initial quality and homogeneity of targets to be driven by optical laser pulse.By developing X-ray imaging,based on the use of an LiF crystal detector,we were able to measure the distribution of energy inside a hard X-ray beam with unprecedented high spatial resolution(~1 mm)and across a field of view larger than some millimetres.This diagnostic can be used in situ,provides a very high dynamic range,has an extremely limited cost,and is relatively easy to be implemented in pump-probe experiments.The proposed methods were successfully applied in pump-probe experiments at the SPring-8 Angstrom Compact free electron LAser(SACLA)XFEL facility and its potential was demonstrated for current and future High Energy Density Science experiments. 展开更多
关键词 XFEL Shock waves Pump-probe experiments High energy density science X-ray spectroscopy X-ray imaging
下载PDF
Multibeam laser-plasma interaction at the Gekko XII laser facility in conditions relevant for direct-drive inertial confinement fusion
2
作者 G.Cristoforetti P.Koester +20 位作者 S.Atzeni D.Batani S.Fujioka Y.Hironaka S.Hüller T.Idesaka k.katagiri K.Kawasaki R.Kodama D.Mancelli Ph.Nicolai N.Ozaki A.Schiavi K.Shigemori R.Takizawa T.Tamagawa D.Tanaka A.Tentori Y.Umeda A.Yogo L.A.Gizzi 《High Power Laser Science and Engineering》 SCIE EI CAS CSCD 2023年第2期70-80,共11页
Laser–plasma interaction and hot electrons have been characterized in detail in laser irradiation conditions relevant for direct-drive inertial confinement fusion.The experiment was carried out at the Gekko XII laser... Laser–plasma interaction and hot electrons have been characterized in detail in laser irradiation conditions relevant for direct-drive inertial confinement fusion.The experiment was carried out at the Gekko XII laser facility in multibeam planar target geometry at an intensity of approximately 3×10^(15)W/cm^(2).Experimental data suggest that high-energy electrons,with temperatures of 20–50 keV and conversion efficiencies ofη<1%,were mainly produced by the damping of electron plasma waves driven by two-plasmon decay(TPD).Stimulated Raman scattering(SRS)is observed in a near-threshold growth regime,producing a reflectivity of approximately 0.01%,and is well described by an analytical model accounting for the convective growth in independent speckles.The experiment reveals that both TPD and SRS are collectively driven by multiple beams,resulting in a more vigorous growth than that driven by single-beam laser intensity. 展开更多
关键词 inertial confinement fusion laser plasma interaction parametric instabilities
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部