期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Superconductivity Observed in Tantalum Polyhydride at High Pressure 被引量:2
1
作者 何鑫 张昌玲 +15 位作者 李芷文 张思佳 闵保森 张俊 卢可 赵建发 史鲁川 彭毅 望贤成 冯少敏 宋静 王鲁红 V.B.Prakapenka S.Chariton 刘浩哲 靳常青 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第5期90-93,共4页
We report experimental discovery of tantalum polyhydride superconductor.It was synthesized under highpressure and high-temperature conditions using diamond anvil cell combined with in situ high-pressure laser heating ... We report experimental discovery of tantalum polyhydride superconductor.It was synthesized under highpressure and high-temperature conditions using diamond anvil cell combined with in situ high-pressure laser heating techniques.The superconductivity was investigated via resistance measurements at pressures.The highest superconducting transition temperature T_(c)was found to be~30 K at 197 GPa in the sample that was synthesized at the same pressure with~2000 K heating.The transitions are shifted to low temperature upon applying magnetic fields that support the superconductivity nature.The upper critical field at zero temperatureμ_0H_(c2)(0)of the superconducting phase is estimated to be~20 T that corresponds to Ginzburg-Landau coherent length~40 A.Our results suggest that the superconductivity may arise from 143d phase of TaH_(3).It is,for the first time to our best knowledge,experimental realization of superconducting hydrides for the VB group of transition metals. 展开更多
关键词 HYDRIDE RESISTANCE SUPERCONDUCTIVITY
下载PDF
Low-Temperature Nitriding by Means of SMAT 被引量:3
2
作者 W.P.Tong H.W.Zhang +3 位作者 N.R.Tao Z.B.Wang J.Lu k.lu 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期301-306,共6页
The microstructure in the surface layer of iron and steel samples can be refined at the nanometer scale by means of a surface mechanical attrition treatment (SMAT) that generates repetitive severe plastic deformation ... The microstructure in the surface layer of iron and steel samples can be refined at the nanometer scale by means of a surface mechanical attrition treatment (SMAT) that generates repetitive severe plastic deformation to the surface layer. The subsequent nitriding kinetics of the as-treated samples with the nanostructured surface layer is greatly enhanced so that the nitriding temperatures can be reduce to 300 - 400 °C regions. This enhanced processing method demonstrates both the technological significance of nanomaterials in advancing the traditional processing techniques, and provides a new approach for selective surface reactions in solids. This article reviews the present state of the art in this field. The microstructure and properties of SMAT samples nitrided will be summarized. Further considerations of the development and applications of this new technique will also be presented. 展开更多
关键词 低温渗氮 SMAT 纳米结晶 表面机械损耗
下载PDF
An Aluminide Surface Layer Containing Lower-Al on Ferritic-Martensitic Steel Formed by Lower-Temperature Aluminization 被引量:6
3
作者 S.Guo Z.B.Wang k.lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第12期1268-1273,共6页
An aluminide(AlFe and α-(FeAl)) surface layer containing lower-Al was formed on ferritic-martensitic steel P92 by means of surface mechanical attrition treatment(SMAT) combined with a duplex aluminization proce... An aluminide(AlFe and α-(FeAl)) surface layer containing lower-Al was formed on ferritic-martensitic steel P92 by means of surface mechanical attrition treatment(SMAT) combined with a duplex aluminization process at lower temperatures,i.e.a packed aluminization followed by a diffusion annealing treatment below its tempering temperature.Indentation tests indicated that the lower-Al surface layer formed on the SMAT sample is more resistant to cracking and has better adhesion to the substrate in comparison with the Al 5Fe 2 layer formed on the as-received sample after the duplex aluminization process.Isothermal steam oxidation measurements showed that the oxidation resistance is increased significantly by the lower-Al surface layer due to the formation of a protective(Fe,Cr)Al 2O 4 layer.The rate constant of oxidation was estimated to decrease from-0.849 mg^2 cm^-4h^-1 of the as-received material to^0.011 mg^2 cm^-4 h^-1 of the AlFe layer at 700 ℃. 展开更多
关键词 Surface mechanical attrition treatment (SMAT) Ferritic-martensitic steel Lower-temperature aluminization Aluminide Steam oxidation
原文传递
Diffusion behavior of Cr in gradient nanolaminated surface layer on an interstitial-free steel 被引量:2
4
作者 S.L.Xie Z.B.Wang k.lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第3期460-464,共5页
Nanolaminated structures composed of low-angle grain boundaries(LAGBs) possess high thermal stability. In this paper, a gradient nanolaminated(GNL) surface layer with smooth finish was fabricated on an interstitial-fr... Nanolaminated structures composed of low-angle grain boundaries(LAGBs) possess high thermal stability. In this paper, a gradient nanolaminated(GNL) surface layer with smooth finish was fabricated on an interstitial-free steel by means of surface mechanical rolling treatment. Microstructural observations demonstrated that the average lamellar thickness is about 80 nm in the topmost surface layer and increases with increasing depth. High thermal stability was confirmed in the GNL surface layer after annealing at 500℃. Diffusion measurements showed that effective diffusivity of Cr in GNL layer is 4–6 orders of magnitude higher than lattice diffusivity within the temperature range from 400 to 500℃. This might be attributed to numerous LAGBs or dislocation structures with a higher energy state in the GNL surface layer. This work demonstrates the possibility to advanced chromizing(or other surface alloying)processes of steels with formation of GNL surface layer, so that a thicker alloyed surface layer with a stable nanostructure is achieved. 展开更多
关键词 GRADIENT nanolaminated structure Interstitial-free steel DIFFUSION LOW-ANGLE GRAIN boundary Surface mechanical ROLLING treatment
原文传递
Annealing-induced Hardening in a Nanostructured Low-carbon Steel Prepared by Using Dynamic Plastic Deformation 被引量:1
5
作者 L.X.Sun N.R.Tao +2 位作者 M.Kuntz J.Q.Yu k.lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第8期731-735,共5页
Lamellar nanostructures were induced in a plain martensitic low-carbon steel by using dynamic plastic deformation at room temperature.The nanostructured steel was hardened after annealing at 673 K for20 min,with a ten... Lamellar nanostructures were induced in a plain martensitic low-carbon steel by using dynamic plastic deformation at room temperature.The nanostructured steel was hardened after annealing at 673 K for20 min,with a tensile strength increased from 1.2 GPa to 1.6 GPa.Both the remained nanostructures and annealing-induced precipitates in nano-scale play key roles in the hardening. 展开更多
关键词 NANOSTRUCTURE Annealing Precipitation hardening Low-carbon steel Dynamic plastic deformation
原文传递
Orientation dependence of mechanically induced grain boundary migration in nano-grained copper 被引量:1
6
作者 J.X.Hou X.Y.Li k.lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第9期30-34,共5页
Tensile tests were carried out on gradient nanograined copper samples to investigate the grain orientation dependence of mechanically induced grain boundary migration(GBM) process. The relationship between GBM and the... Tensile tests were carried out on gradient nanograined copper samples to investigate the grain orientation dependence of mechanically induced grain boundary migration(GBM) process. The relationship between GBM and the orientations of nanograins relative to loading direction was established by using electron backscatter diffraction. GBM is found to be more pronounced in the grains with higher Schmid factors where dislocations are easier to slip. As a result, the fraction of high angle grain boundaries decreases and that of low angle grain boundaries increases after GBM. 展开更多
关键词 Grain boundary migration Orientation dependence TEXTURE Nano-grain COPPER
原文传递
Transition of deformation mechanisms from twinning to dislocation slip in nanograined pure cobalt
7
作者 Y.W.Qi Z.P.Luo +1 位作者 X.Y.Li k.lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第26期124-129,共6页
Deformation mechanisms of nanograined and submicron-grained pure cobalt processed by means of high strain rate shear deformation at cryogenic temperatures were studied.Microstructural analysis revealed a transition of... Deformation mechanisms of nanograined and submicron-grained pure cobalt processed by means of high strain rate shear deformation at cryogenic temperatures were studied.Microstructural analysis revealed a transition of governing deformation mechanism from deformation twinning and dislocation slip in submicron-grains to and dislocations slip in nanograins.Microhardness tests illustrated that the Hall-Petch relation slope changes consequently with the transition of deformation mechanism. 展开更多
关键词 NANOGRAIN COBALT Deformation mechanism Hall-Petch relation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部