A green chemical conversion coating for magnesium was obtained with a phytic acid solution. The microstructure and corrosion properties of phytic acid conversion coated magnesium were further improved by soaking in st...A green chemical conversion coating for magnesium was obtained with a phytic acid solution. The microstructure and corrosion properties of phytic acid conversion coated magnesium were further improved by soaking in stearic acid solution. The phytic acid conversion coated magnesium after soaking in the stearic acid showed no micro-cracks and the surface became very smooth. The corrosion behavior of the uncoated and coated magnesium samples was studied by electrochemical methods. The corrosion resistance of the stearic acid treated sample was much higher than that of phytic acid conversion coated magnesium or uncoated magnesium. The electrochemical results indicated that the stearic acid treated coating provided effective corrosion protection to the magnesium sample.展开更多
A uniform, compact, and well adherent conversion coating of magnesium hydroxide has been formed on bioresorbable magnesium disks by means of a hydrothermal technique. Electrochemical results indicate that the coating ...A uniform, compact, and well adherent conversion coating of magnesium hydroxide has been formed on bioresorbable magnesium disks by means of a hydrothermal technique. Electrochemical results indicate that the coating brings about a significant reduction in magnesium corrosion in phosphate buffered saline (PBS) solution. It is also observed that corrosion resistance of the coating increases with an increase in treatment time, which in turn, increases the coating thickness. The protective behavior of magnesium hydroxide coating is attributed to its chemical inertness in PBS solution. The coatings are found to be free from pores that reduce the direct contact between corroding media and underlying magnesium.展开更多
基金financially supported by the National Science Foundation through ERC-RMB at NCAT
文摘A green chemical conversion coating for magnesium was obtained with a phytic acid solution. The microstructure and corrosion properties of phytic acid conversion coated magnesium were further improved by soaking in stearic acid solution. The phytic acid conversion coated magnesium after soaking in the stearic acid showed no micro-cracks and the surface became very smooth. The corrosion behavior of the uncoated and coated magnesium samples was studied by electrochemical methods. The corrosion resistance of the stearic acid treated sample was much higher than that of phytic acid conversion coated magnesium or uncoated magnesium. The electrochemical results indicated that the stearic acid treated coating provided effective corrosion protection to the magnesium sample.
基金supported by the National Science Foundation through Engineering Research Center of Revolutionizing Metallic Biomaterials at NCAT
文摘A uniform, compact, and well adherent conversion coating of magnesium hydroxide has been formed on bioresorbable magnesium disks by means of a hydrothermal technique. Electrochemical results indicate that the coating brings about a significant reduction in magnesium corrosion in phosphate buffered saline (PBS) solution. It is also observed that corrosion resistance of the coating increases with an increase in treatment time, which in turn, increases the coating thickness. The protective behavior of magnesium hydroxide coating is attributed to its chemical inertness in PBS solution. The coatings are found to be free from pores that reduce the direct contact between corroding media and underlying magnesium.