Feature selection(FS) aims to determine a minimal feature(attribute) subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory(RST) has been us...Feature selection(FS) aims to determine a minimal feature(attribute) subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory(RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone,requiring no additional information. This paper describes the fundamental ideas behind RST-based approaches,reviews related FS methods built on these ideas,and analyses more frequently used RST-based traditional FS algorithms such as Quickreduct algorithm,entropy based reduct algorithm,and relative reduct algorithm. It is found that some of the drawbacks in the existing algorithms and our proposed improved algorithms can overcome these drawbacks. The experimental analyses have been carried out in order to achieve the efficiency of the proposed algorithms.展开更多
Feature selection(FS) refers to the process of selecting those input attributes that are most predictive of a given outcome. Unlike other dimensionality reduction methods,feature selectors preserve the original mean...Feature selection(FS) refers to the process of selecting those input attributes that are most predictive of a given outcome. Unlike other dimensionality reduction methods,feature selectors preserve the original meaning of the features after reduction. The benefits of FS are twofold:it considerably decreases the running time of the induction algorithm,and increases the accuracy of the resulting model. This paper analyses the FS process in mammogram classification using fuzzy logic and rough set theory. Rough set and fuzzy logic based Quickreduct algorithms are applied for the FS from the features extracted using gray level co-occurence matrix(GLCM) constructed over the mammogram region. The predictive accuracy of the features is tested using NaiveBayes,Ripper,C4.5,and ant-miner algorithms. The results show that the ant-miner produces significant result comparing with others and the number of features selected using fuzzy-rough quick reduct algorithm is minimum,too.展开更多
基金supported by the UGC, SERO, Hyderabad under FDP during XI plan period, and the UGC, New Delhi for financial assistance under major research project Grant No. F-34-105/2008
文摘Feature selection(FS) aims to determine a minimal feature(attribute) subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory(RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone,requiring no additional information. This paper describes the fundamental ideas behind RST-based approaches,reviews related FS methods built on these ideas,and analyses more frequently used RST-based traditional FS algorithms such as Quickreduct algorithm,entropy based reduct algorithm,and relative reduct algorithm. It is found that some of the drawbacks in the existing algorithms and our proposed improved algorithms can overcome these drawbacks. The experimental analyses have been carried out in order to achieve the efficiency of the proposed algorithms.
文摘Feature selection(FS) refers to the process of selecting those input attributes that are most predictive of a given outcome. Unlike other dimensionality reduction methods,feature selectors preserve the original meaning of the features after reduction. The benefits of FS are twofold:it considerably decreases the running time of the induction algorithm,and increases the accuracy of the resulting model. This paper analyses the FS process in mammogram classification using fuzzy logic and rough set theory. Rough set and fuzzy logic based Quickreduct algorithms are applied for the FS from the features extracted using gray level co-occurence matrix(GLCM) constructed over the mammogram region. The predictive accuracy of the features is tested using NaiveBayes,Ripper,C4.5,and ant-miner algorithms. The results show that the ant-miner produces significant result comparing with others and the number of features selected using fuzzy-rough quick reduct algorithm is minimum,too.