期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Magnesium matrix composite reinforced by nanoparticles-A review 被引量:23
1
作者 K.B.Nie X.J.Wang +2 位作者 K.K.Deng X.S.Hu k.wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期57-77,共21页
Significant progress has been made in magnesium-based composites during recent decades,especially for the appearance of magnesium matrix composite reinforced by nanoparticles.The nanoparticles added not only exhibit a... Significant progress has been made in magnesium-based composites during recent decades,especially for the appearance of magnesium matrix composite reinforced by nanoparticles.The nanoparticles added not only exhibit a good strengthening effect,but also maintain the initial toughness of the matrix,effectively balancing the contradiction between the strength and plasticity in the traditional magnesium matrix composites.The magnesium matrix nanocomposites with excellent mechanical properties have pushed the development of magnesium matrix composites to a new stage.However,it is very difficult to disperse the nanoparticles in metal melt especially in magnesium melt which is different from other metal melts and dangerous during the cast processing.This means that the preparation of magnesium matrix nanocomposite is extremely challenging.Further,the magnesium matrix nanocomposites possess a distinctive characteristic in deformation behavior,strengthening and toughening mechanism due to their special size effect of nanoparticles.Accordingly,this review will focus on the new preparation technologies,deformation behavior,mechanical properties and strengthening and toughening mechanisms.The potential applications,development trends and future research ideas of magnesium matrix nanocomposite are also prospected.©2020 Published by Elsevier B.V.on behalf of Chongqing University. 展开更多
关键词 Magnesium matrix nanocomposite MICROSTRUCTURE Mechanical properties Strengthening mechanism
下载PDF
SUPERPLASTICITY IN SiC_w/ZK60 COMPOSITE 被引量:4
2
作者 F.Yan k.wu M.Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第3期217-220,共4页
The superplastic deformation behavior of SiCw/ZK60 composite was investigated at temperatures ranging from 573K to 723K and at initial strain rates ranging from 8.3x10-4s-1 to 8.3x10-2s-1. A maximum elongation of 200%... The superplastic deformation behavior of SiCw/ZK60 composite was investigated at temperatures ranging from 573K to 723K and at initial strain rates ranging from 8.3x10-4s-1 to 8.3x10-2s-1. A maximum elongation of 200% with a m-value of 0.35 was obtained at 613K and a initial strain rate of 1.67x 10-2s-1. The apparent activation energy (98kJ/mol) approximates that for grain boundary diffusion (92kJ/mol) in magnesium. It is proposed that the dominant mechanism of superplastic deformation in the present composite is grain boundary sliding accommodated by diffusional transport, besides, interfacial sliding plays an important role in the superplastic deformation. 展开更多
关键词 magnesium matrix composite SUPERPLASTICITY apparent activation energy
下载PDF
Microstructure and room temperature tensile properties of 1μm-SiCp/AZ31B magnesium matrix composite 被引量:1
3
作者 M.J.Shen X.J.Wang +3 位作者 M.F.Zhang B.H.Zhang M.Y.Zheng k.wu 《Journal of Magnesium and Alloys》 SCIE EI CAS 2015年第2期155-161,共7页
In the present study,AZ31B magnesium matrix composites reinforced with two volume fractions(3 and 5 vol.%)of micron-SiC particles(1μm)were fabricated by semisolid stirring assisted ultrasonic vibration method.The as-... In the present study,AZ31B magnesium matrix composites reinforced with two volume fractions(3 and 5 vol.%)of micron-SiC particles(1μm)were fabricated by semisolid stirring assisted ultrasonic vibration method.The as-cast ingots were extruded at 350℃ with the extrusion ratio of 15:1 at a constant ram speed of 15 mm/s.The microstructure of the composites was investigated by optical microscopy,scanning electron microscope and transmission electron microscope.Microstructure characterization of the composites showed relative uniform reinforcement distribution and significant grain refinement.The presence of 1μm-SiC particles assisted in improving the elastic modulus and tensile strength.The ultimate tensile strength and yield strength of the 5 vol.%SiCp/AZ31B composites were simultaneously improved. 展开更多
关键词 Magnesium matrix composite MICROSTRUCTURE Mechanical properties
下载PDF
Processing, Microstructure and Mechanical Properties of Ti6Al4V Particles-Reinforced Mg Matrix Composites 被引量:9
4
作者 X.M.Wang X.J.Wang +2 位作者 X.S.Hu k.wu M.Y.Zheng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第10期940-950,共11页
Novel Ti6Al4V particles-reinforced AZ91 Mg matrix composites were successfully fabricated by stir casting method. The stirring time in semisolid condition directly affected the particle distribution and the quality of... Novel Ti6Al4V particles-reinforced AZ91 Mg matrix composites were successfully fabricated by stir casting method. The stirring time in semisolid condition directly affected the particle distribution and the quality of the ingots. Furthermore, the optimal speed of the heating and the liquid stirring could overcome particle settlement caused by the density difference between the matrix and the particles. Ti6Al4V particles distributed uniformly in the composites with different particle contents. The average grain size decreased with the increase in the particle contents. The Ti6A14V particles bonded pretty well with the alloy matrix. In addition, there were some interfacial reactions in the composites. There were rod-like A13Ti phases at the interface. The precipitates extended from the particle surface to the matrix, and they might improve the interfacial bonding strength. The ultimate tensile strength, yield strength and elastic modulus were enhanced as the particle contents increased, and the elongation was much better than that of the same matrix material reinforced with SiC particles. Thus, the novel composites exhibit better comprehensive mechanical properties. 展开更多
关键词 Magnesium matrix composites Ti6Al4V particles Stir casting Microstructure Mechanicalproperties
原文传递
An insight into Mg alloying effects on Cu thin films:microstructural evolution and mechanical behavior 被引量:3
5
作者 G.Y.Li L.F.Cao +5 位作者 J.Y.Zhang X.G.Li Y.Q.Wang k.wu G.Liu J.Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第22期101-112,共12页
How to design ultra-strong,light-weight Cu alloys is a long-term pursuit in materials community,which is technically superior and cost-effective for their promising energy-saving applications.In this work,we prepared ... How to design ultra-strong,light-weight Cu alloys is a long-term pursuit in materials community,which is technically superior and cost-effective for their promising energy-saving applications.In this work,we prepared Cu-Mg alloyed thin films to study light element Mg alloying effects on the microstructure,hardness and strain rate sensitivity(SRS) of nanocrystalline Cu thin films.In the studied Mg concentrationrange spanning from 0 at.% to 16.8 at.%,both the grain size and the twin spacing decrease monotonously with increasing Mg composition while Cu-2.8 at.% Mg sample has the highest twin fraction of ~75%.A combined strengthening model was employed to quantify the Mg concentration-dependent hardness of nanotwinned(NT) Cu-Mg thin films,in which the grain/twin boundary facilitates strengthening while the solute Mg atoms induce softening.Both the constant rate of loading tests and the nanoindentation creep tests uncover that compared with pure Cu samples,the NT Cu-Mg thin films manifest much lower SRS,particularly in the creep tests,owing to the activation of dynamic strain aging effects. 展开更多
关键词 Cu-Mg thin films Microstructure evolution Creep tests Hardness Strain rate sensitivity
原文传递
Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates:A comparison of Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu vs Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu 被引量:1
6
作者 Y.F.Zhao H.H.Chen +5 位作者 D.D.Zhang J.Y.Zhang Y.Q.Wang k.wu G.Liu J.Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第21期199-213,共15页
In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,an... In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,and comparatively study He-ion irradiation effects on their microstructure and mechanical properties.It ap-pears that the as-deposited HEA/Cu NLs manifest two size h-dependent hardness regimes(i.e.,increased hardness at small h and hardness plateau at large h),while the He-implanted ones exhibit monotonically increased hardness.Contrary to the fashion that smaller h renders less irradiation hardening in bimetal NLs,the Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs manifest the trend that smaller h leads to greater irradiation hard-ening.By contrast,the Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs exhibit the maximum irradiation hardening at a critical h=50 nm.Below this critical size,smaller h results in lower radiation hardening(similar to bimetal NLs),while above this size,smaller h results in greater radiation hardening(similar to Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs).Moreover,these transformable HEA/Cu NLs display inverse h-dependent strain rate sensitivity(SRS m)before and after He-ion irradiation.Nevertheless,compared with as-deposited samples,the irradi-ated Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs display reduced SRS,while the irradiated Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs dis-play enhanced SRS.Such unusual size-dependent irradiation strengthening and inverse h effect on SRS in irradiated samples were rationalized by considering the blocking effects of He bubbles on dislocation nucleation and motion,i.e.,dislocations shearing or bypassing He bubbles. 展开更多
关键词 High entropy alloy/metal nanolaminates Interfaces Irradiation hardening Strain rate sensitivity Size effects
原文传递
A Novel Melt Processing for Mg Matrix Composites Reinforced by Multiwalled Carbon Nanotubes 被引量:4
7
作者 H.L.Shi X.J.Wang +4 位作者 C.L.Zhang C.D.Li C.Ding k.wu X.S.Hu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第12期1303-1308,共6页
Carbon nanotubes(CNTs) reinforced Mg matrix composites were fabricated by a novel melt processing.The novel processing consisted of two courses:CNTs pre-dispersion and ultrasonic melt processing.Mechanical ball-mil... Carbon nanotubes(CNTs) reinforced Mg matrix composites were fabricated by a novel melt processing.The novel processing consisted of two courses:CNTs pre-dispersion and ultrasonic melt processing.Mechanical ball-milling was employed to pre-disperse CNTs on Zinc(Zn) flakes.Serious CNT entanglements were well dispersed to single CNT or tiny clusters on Zn flakes.The ultrasonic melt processing further dispersed CNTs in the Mg melt,especially tiny CNT clusters.Thus,a uniform dispersion of CNTs was achieved in the as-cast composites.Hot extrusion further improved the distribution of CNTs.CNTs increased both the strength and elongation of the matrix alloy.Notably,the elongation of the matrix alloy was enhanced by 40%.Grain refinement and the pulling-out of CNTs resulted in the evident improvement of ductility for the composites. 展开更多
关键词 Pre-dispersion Carbon nanotubes Magnesium matrix composites Ultrasonic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部