Strength and ductility synergy in an Mg-3mass%Al-Mn(AM30)alloy sheet was successfully improved via twin-roll casting and annealing at low-temperature.An AM30 alloy sheet produced by twin-roll casting,homogenization,ho...Strength and ductility synergy in an Mg-3mass%Al-Mn(AM30)alloy sheet was successfully improved via twin-roll casting and annealing at low-temperature.An AM30 alloy sheet produced by twin-roll casting,homogenization,hot-rolling,and subsequent annealing at 170℃ for 64 h exhibits a good 0.2%proof stress of 170 MPa and a large elongation to failure of 33.1%along the rolling direction.The sheet also shows in-plane isotropic tensile properties,and the 0.2%proof stress and elongation to failure along the transverse direction are 176 MPa and 35.5%,respectively.Though the sheet produced by direct-chill casting also shows moderate strengths if the annealing condition is same,the direct-chill casting leads to the deteriorated elongation to failure of 23.9%and 30.0%for the rolling and transverse directions,respectively.As well as such excellent tensile properties,a high room-temperature stretch formability with an Index Erichsen value of 8.3 mm could be obtained in the twin-roll cast sheet annealed at 170℃ for 64 h.The annealing at a higher temperature further improves the stretch formability;however,this results in the decrease of the tensile properties.Microstructure characterization reveals that the excellent combination of strengths,ductility,and stretch formability in the twin-roll cast sheet annealed at the low-temperature annealing is mainly attributed to the uniform recrystallized microstructure,fine grain size,and circular distribution of(0001)poles away from the normal direction of the sheet.展开更多
In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility o...In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility of re-generation of used adsorbents by a nonthermal plasma desorption technique. Three different types of corona electrodes, namely, pipe, helical wire, and straight wire, were used for analyzing their effectiveness in NOx reduction/desorption. The pipe- type corona electrode exhibited a nitric oxide (NO) conversion of 50%, which is 1.5 times that of the straight-wire-type electrode at an energy density of 175 J/L. The helical-wire-type corona electrode exhibited a NOx desorption efficiency almost 4 times that of the pipe-type electrode, indicating the possibility that corona-generated species play a crucial role in desorption.展开更多
基金supported by JSPS KAKENHI Grant Numbers JP19K15321,JP18H03837The Amada Foundation(AF2019037-C2)+2 种基金Advanced Low Carbon Technology Research and Development Program(ALCA),12102886National Natural Science Foundation,Grant Number 51971075Nagaoka University of Technology(NUT)Presidential Research Grant.
文摘Strength and ductility synergy in an Mg-3mass%Al-Mn(AM30)alloy sheet was successfully improved via twin-roll casting and annealing at low-temperature.An AM30 alloy sheet produced by twin-roll casting,homogenization,hot-rolling,and subsequent annealing at 170℃ for 64 h exhibits a good 0.2%proof stress of 170 MPa and a large elongation to failure of 33.1%along the rolling direction.The sheet also shows in-plane isotropic tensile properties,and the 0.2%proof stress and elongation to failure along the transverse direction are 176 MPa and 35.5%,respectively.Though the sheet produced by direct-chill casting also shows moderate strengths if the annealing condition is same,the direct-chill casting leads to the deteriorated elongation to failure of 23.9%and 30.0%for the rolling and transverse directions,respectively.As well as such excellent tensile properties,a high room-temperature stretch formability with an Index Erichsen value of 8.3 mm could be obtained in the twin-roll cast sheet annealed at 170℃ for 64 h.The annealing at a higher temperature further improves the stretch formability;however,this results in the decrease of the tensile properties.Microstructure characterization reveals that the excellent combination of strengths,ductility,and stretch formability in the twin-roll cast sheet annealed at the low-temperature annealing is mainly attributed to the uniform recrystallized microstructure,fine grain size,and circular distribution of(0001)poles away from the normal direction of the sheet.
文摘In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility of re-generation of used adsorbents by a nonthermal plasma desorption technique. Three different types of corona electrodes, namely, pipe, helical wire, and straight wire, were used for analyzing their effectiveness in NOx reduction/desorption. The pipe- type corona electrode exhibited a nitric oxide (NO) conversion of 50%, which is 1.5 times that of the straight-wire-type electrode at an energy density of 175 J/L. The helical-wire-type corona electrode exhibited a NOx desorption efficiency almost 4 times that of the pipe-type electrode, indicating the possibility that corona-generated species play a crucial role in desorption.