期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
HIGH CYCLE FATIGUE PROPERTIES OF NICKEL-BASE ALLOY 718 被引量:9
1
作者 K.Kobayashi k.yamaguchi +1 位作者 M.Hayakawa M.Kimura 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期345-349,共5页
The fatigue properties of nickel-base Alloy 718 with fine- and grain-coarse grains were investigated. In the fine-grain alloy, the fatigue strength normalized by the tensile strength was 0.51 at 107 cycles. In contras... The fatigue properties of nickel-base Alloy 718 with fine- and grain-coarse grains were investigated. In the fine-grain alloy, the fatigue strength normalized by the tensile strength was 0.51 at 107 cycles. In contrast, the fatigue strength of the coarse-grain alloy was 0.32 at the same cycles, although the fatigue strengths in the range from 103 to 105 cycles are the same for both alloys. The fracture appearances fatigued at around 106 cycles showed internal fractures originating from the flat facets of austenite grains for both alloys. The difference in fatigue strength at 107 cycles between the fine- and coarse-grain alloys could be explained in terms of the sizes of the facets from which the fractures originated. 展开更多
关键词 aerospace material fatigue high temperature internal fracture facet
下载PDF
Deuterium Retention and Physical Sputtering of Low Activation Ferritic Steel
2
作者 T.Hino k.yamaguchi +3 位作者 Y.Yamauchi Y.Hirohata K.Tsuzuki Y.Kusama 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第2期2737-2740,共4页
Low activation materials have to be developed toward fusion demonstrationreactors. Ferritic steel, vanadium alloy and SiC/SiC composite are candidate materials of the firstwall, vacuum vessel and blanket components, r... Low activation materials have to be developed toward fusion demonstrationreactors. Ferritic steel, vanadium alloy and SiC/SiC composite are candidate materials of the firstwall, vacuum vessel and blanket components, respectively. Although changes of mechanical-thermalproperties owing to neutron irradiation have been investigated so far, there is little data for theplasma material interactions, such as fuel hydrogen retention and erosion. In the present study,deuterium retention and physical sputtering of low activation ferritic steel, F82H, wereinvestigated by using deuterium ion irradiation apparatus. After a ferritic steel sample wasirradiated by 1.7 keV D^+ ions, the weight loss was measured to obtain the physical sputteringyield. The sputtering yield was 0.04, comparable to that of stainless steel. In order to obtain theretained amount of deuterium, technique of thermal desorption spectroscopy (TDS) was employed to theirradiated sample. The retained deuterium desorbed at temperature ranging from 450 K to 700 K, inthe forms of DHO, D_2, D_2O and hydrocarbons. Hence, the deuterium retained can be reduced by bakingwith a relatively low temperature. The fluence dependence of retained amount of deuterium wasmeasured by changing the ion fluence. In the ferritic steel without mechanical polish, the retainedamount was large even when the fluence was low. In such a case, a large amount of deuterium wastrapped in the surface oxide layer containing O and C. When the fluence was large, the thickness ofsurface oxide layer was reduced by the ion sputtering, and then the retained amount in the oxidelayer decreased. In the case of a high fluence, the retained amount of deuterium became comparableto that of ferritic steel with mechanical polish or SS 316 L, and one order of magnitude smallerthan that of graphite. When the ferritic steel is used, it is required to remove the surface oxidelayer for reduction of fuel hydrogen retention. Ferritic steel sample was exposed to the environmentof JFT-2M tokamak in JAERI and after thatthe deuterium retention was examined. The result wasroughly the same as the case of deuterium ion irradiation experiment. 展开更多
关键词 ferritic steel fuel hydrogen retention sputtering yield first wall fusionreactor
下载PDF
Application of Kelvin Probe to Studies of Fusion Reactor Materials under Irradiation
3
作者 罗广南 k.yamaguchi +1 位作者 T.Terai M.Yamawaki 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第4期2982-2984,共3页
Recently, the work function (WF) changes in metallic and ceramic materials to be potentially used in future fusion reactors have been examined by means of Kelvin probe (KP), under He ion irradiation in high energy... Recently, the work function (WF) changes in metallic and ceramic materials to be potentially used in future fusion reactors have been examined by means of Kelvin probe (KP), under He ion irradiation in high energy (MeV) and / or low energy (500 eV) ranges. The results of polycrystalline Ni samples indicate that the 1 MeV beam only induces decrease in the WF within the experimental fluence range; whereas the irradiation of 500 eV beam results in decrease in the WF firstly, then increase till saturation. A dual layer surface model is employed to explain the observed phenomena, together with computer simulation results by SRIM code. Charges buildup on the surface of lithium ceramics has been found to greatly influence the probe output, which can be explained qualitatively using a model concerning an induction electric field due to external field and free charges on the ceramic surface. 展开更多
关键词 fusion reactor materials work function IRRADIATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部