The effect of branching on the blood circulation and tumor targeting of polymer nanovehicles in vivo was investigated in this study. For the purpose, star-branched poly(lactic acid) and poly(2-methacryloyloxyethyl pho...The effect of branching on the blood circulation and tumor targeting of polymer nanovehicles in vivo was investigated in this study. For the purpose, star-branched poly(lactic acid) and poly(2-methacryloyloxyethyl phosphorylcholine)(PLA-PMPC)copolymers with umbrella-type AB3,(AB3)_(2), and(AB3)_(3) architecture were synthesized by branching at the PLA core. Micelles self-assembled from these copolymers were used to evaluate the effect of core branching on blood circulation and tumor targeting. The results showed that branching changed the behavior of polymeric self-assembly in solution, thereby changing the size and surface anti-fouling performance of the polymeric micelles. Moreover, star-branched copolymer micelles with a higher branching degree allowed their payload to persist better in blood(half-time prolonged from 7.1, 8.6 to 13.8 h) and for a 1.72-fold higher content at the tumor site. These studies suggest that raising the branching degree of amphiphilic copolymer potentially offers a promising strategy for the design of carriers capable of enhanced circulation and targeting in vivo.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51773151)。
文摘The effect of branching on the blood circulation and tumor targeting of polymer nanovehicles in vivo was investigated in this study. For the purpose, star-branched poly(lactic acid) and poly(2-methacryloyloxyethyl phosphorylcholine)(PLA-PMPC)copolymers with umbrella-type AB3,(AB3)_(2), and(AB3)_(3) architecture were synthesized by branching at the PLA core. Micelles self-assembled from these copolymers were used to evaluate the effect of core branching on blood circulation and tumor targeting. The results showed that branching changed the behavior of polymeric self-assembly in solution, thereby changing the size and surface anti-fouling performance of the polymeric micelles. Moreover, star-branched copolymer micelles with a higher branching degree allowed their payload to persist better in blood(half-time prolonged from 7.1, 8.6 to 13.8 h) and for a 1.72-fold higher content at the tumor site. These studies suggest that raising the branching degree of amphiphilic copolymer potentially offers a promising strategy for the design of carriers capable of enhanced circulation and targeting in vivo.