Effect of holding time on microstructural developments and transformation of precipitates formed at the interface during transient liquid-phase bonding of a duplex stainless steel using a Ni-based amorphous insert all...Effect of holding time on microstructural developments and transformation of precipitates formed at the interface during transient liquid-phase bonding of a duplex stainless steel using a Ni-based amorphous insert alloy was studied. The experimental results reveal that the microstructure of the adjacent base metal varies clearly as a function of holding time. The migration of Cr and Ni elements and the → transformation seem to play relevant roles in this microstructure evolution. The scanning electron microscopy (SEM) and electron prob X-ray microanalysis (EPMA) results indicate the transformation of BN→BN and (N, Mo) boride→BN at the interface with the holding time of 60-1 800 s. N content changes with holding time increasing at locations at the interface might be a controlling factor contributing to this transformation.展开更多
基金Project(51205428) supported by the National Natural Science Foundation of ChinaProject(CDJRC10130011) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(2010-0001-222) supported by NCRC (National Core Research Center) Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology,Korea
文摘Effect of holding time on microstructural developments and transformation of precipitates formed at the interface during transient liquid-phase bonding of a duplex stainless steel using a Ni-based amorphous insert alloy was studied. The experimental results reveal that the microstructure of the adjacent base metal varies clearly as a function of holding time. The migration of Cr and Ni elements and the → transformation seem to play relevant roles in this microstructure evolution. The scanning electron microscopy (SEM) and electron prob X-ray microanalysis (EPMA) results indicate the transformation of BN→BN and (N, Mo) boride→BN at the interface with the holding time of 60-1 800 s. N content changes with holding time increasing at locations at the interface might be a controlling factor contributing to this transformation.