The propagation speed is one of the most important characteristics for describing freak waves. The research of freak wave speed is not only helpful for understanding the generation mechanism and evolution process of f...The propagation speed is one of the most important characteristics for describing freak waves. The research of freak wave speed is not only helpful for understanding the generation mechanism and evolution process of freak waves, but also applicable to the prediction. A stable and accurate method is proposed for the cal- culation of the freak wave speed, in which physical model tests are carried out to measure the motion of the largest wave crest along the wave tank. The linear regression relationship between the spatial position of the largest wave crest and instantaneous moment is established to calculate the speed of totally 248 cases of experimental freak waves and 312 supplementary cases of numerical freak waves. Based on the calculate results, a semitheoretical and semiempirical formula is proposed by using a regression analysis method to predict the speed of the freak wave, and the nonlinear characteristic of the freak wave speed is also investi- gated.展开更多
In order to study the effects of loading condition and temperature on the dynamic properties of asphalt mixtures, the dynamic loading tests on different loading condition (various speeds and loads under a certain rou...In order to study the effects of loading condition and temperature on the dynamic properties of asphalt mixtures, the dynamic loading tests on different loading condition (various speeds and loads under a certain roughness) and temperature conditions were performed. The experimental result show that the dynamic properties of asphalt mixtures are influenced by vehicle load and speed, besides, the effects of temperature on dynamic properties of asphalt mixture are significant.展开更多
-The hydrodynamic forces on a smooth inclined circular cylinder exposed to oscillating flow were experimentally investigated at Reynolds number (Re) in the range 40000-200000 and Keulegan-Capenter number (KC) in the i...-The hydrodynamic forces on a smooth inclined circular cylinder exposed to oscillating flow were experimentally investigated at Reynolds number (Re) in the range 40000-200000 and Keulegan-Capenter number (KC) in the interval from 5-40. In the test, Re number and KC number were varied systematically. The inertia force coefficient (Cu) and the drag force coefficient (CD) in Morison equation were determined from the measured loads and the water particle kinematics. In this analysis a modified form of Morison equation was used since it uses the normal velocity and acceleration. Thus, the applicability of the Cross Flow Principle was assumed. This principle, simply stated, is as follows: the force acting in the direction normal to the axis of a cylinder placed at some oblique angle with the direction of flow is expressed in terms of the normal component of flow only, and the axial component is disregarded. Both the total in-line force coefficient (CF) and transverse force (lift) coefficient (Cf) were analyzed in terms of their maximum and root mean square values. All the in-line and lift force coefficients were given as a functions of Re and KC number. F'rom this research, it can be seen that the Cross-Flow Principle does not always work well. It seems valid for the total in- line force at high Re and large KC numbers. The Cu for a = 45 is larger and the CD for a = 45 is smaller than that for a = 90 ?and Re> 80000. The hydrodynamic force coefficients CD and Cu for the inclined cylinder are only the functions of the oblique angle (a) and KC number, but not of the Re number.展开更多
The generalized lattice Boltzmann equation(GLBE),with the addition of the standard Smagorinsky subgrid-stress(SGS) model,has been proved that it is more suitable for simulating high Reynolds number turbulent flows whe...The generalized lattice Boltzmann equation(GLBE),with the addition of the standard Smagorinsky subgrid-stress(SGS) model,has been proved that it is more suitable for simulating high Reynolds number turbulent flows when compared with the lattice BGK Boltzmann equation(LBGK).However,the computing efficiency of lattice Boltzmann method(LBM) is too low to make it for practical applications,unless using a massive parallel computing clusters facility.In this study,the massive parallel computing power from an inexpensive graphic processor unit(GPU) and a typical personal computer has been developed for improving the computing efficiency,more than 100 times.This developed three-dimensional(3-D) GLBE-SGS model,with the D3Q19 scheme for simplifying collision and streaming courses,has been successfully used to study 3-D rectangular cavity flows with Reynolds number up to 10000.展开更多
基金The Science Fund for Innovative Research Groups under contract No.50921001
文摘The propagation speed is one of the most important characteristics for describing freak waves. The research of freak wave speed is not only helpful for understanding the generation mechanism and evolution process of freak waves, but also applicable to the prediction. A stable and accurate method is proposed for the cal- culation of the freak wave speed, in which physical model tests are carried out to measure the motion of the largest wave crest along the wave tank. The linear regression relationship between the spatial position of the largest wave crest and instantaneous moment is established to calculate the speed of totally 248 cases of experimental freak waves and 312 supplementary cases of numerical freak waves. Based on the calculate results, a semitheoretical and semiempirical formula is proposed by using a regression analysis method to predict the speed of the freak wave, and the nonlinear characteristic of the freak wave speed is also investi- gated.
基金Funded by the Science and Technology Program of Communications Depart-ment of Henan Province(No.2006P335)
文摘In order to study the effects of loading condition and temperature on the dynamic properties of asphalt mixtures, the dynamic loading tests on different loading condition (various speeds and loads under a certain roughness) and temperature conditions were performed. The experimental result show that the dynamic properties of asphalt mixtures are influenced by vehicle load and speed, besides, the effects of temperature on dynamic properties of asphalt mixture are significant.
文摘-The hydrodynamic forces on a smooth inclined circular cylinder exposed to oscillating flow were experimentally investigated at Reynolds number (Re) in the range 40000-200000 and Keulegan-Capenter number (KC) in the interval from 5-40. In the test, Re number and KC number were varied systematically. The inertia force coefficient (Cu) and the drag force coefficient (CD) in Morison equation were determined from the measured loads and the water particle kinematics. In this analysis a modified form of Morison equation was used since it uses the normal velocity and acceleration. Thus, the applicability of the Cross Flow Principle was assumed. This principle, simply stated, is as follows: the force acting in the direction normal to the axis of a cylinder placed at some oblique angle with the direction of flow is expressed in terms of the normal component of flow only, and the axial component is disregarded. Both the total in-line force coefficient (CF) and transverse force (lift) coefficient (Cf) were analyzed in terms of their maximum and root mean square values. All the in-line and lift force coefficients were given as a functions of Re and KC number. F'rom this research, it can be seen that the Cross-Flow Principle does not always work well. It seems valid for the total in- line force at high Re and large KC numbers. The Cu for a = 45 is larger and the CD for a = 45 is smaller than that for a = 90 ?and Re> 80000. The hydrodynamic force coefficients CD and Cu for the inclined cylinder are only the functions of the oblique angle (a) and KC number, but not of the Re number.
基金supported by the Virginia Institute of Marine Science,College of William and Mary for the Study Environmentthe National Natural Science Foundation of China(Grant No.50679008)
文摘The generalized lattice Boltzmann equation(GLBE),with the addition of the standard Smagorinsky subgrid-stress(SGS) model,has been proved that it is more suitable for simulating high Reynolds number turbulent flows when compared with the lattice BGK Boltzmann equation(LBGK).However,the computing efficiency of lattice Boltzmann method(LBM) is too low to make it for practical applications,unless using a massive parallel computing clusters facility.In this study,the massive parallel computing power from an inexpensive graphic processor unit(GPU) and a typical personal computer has been developed for improving the computing efficiency,more than 100 times.This developed three-dimensional(3-D) GLBE-SGS model,with the D3Q19 scheme for simplifying collision and streaming courses,has been successfully used to study 3-D rectangular cavity flows with Reynolds number up to 10000.