The insertion reaction mechanism of CBr2 with CH3CH2O has been studied by using the B3LYP/6-311G(d) and CCSD(T)/6-311G(d) at single point. The geometries of reactions,transition state and products were completely opti...The insertion reaction mechanism of CBr2 with CH3CH2O has been studied by using the B3LYP/6-311G(d) and CCSD(T)/6-311G(d) at single point. The geometries of reactions,transition state and products were completely optimized. All the transition state is verified by the vibrational analysis and the internal re-action coordinate (IRC) calculations. The results show that reaction (1) is the dominant reaction path,which proceeds via two steps: i) two reactants form an intermediate (IM1),which is an exothermal re-action of 8.62 kJ·mol?1 without energy barrier; ii) P1 is obtained via the TS1 and the H-shift,in which the energy barrier is 44.53 kJ·mol?1. The statistical thermodynamics and Eyring transition state theory with Wigner correction are used to study the thermodynamic and kinetic characters of this reaction in temperature range from 100 to 2200 K. The results show that the appropriate reaction temperature ranges from 200 to 1900 K at 1.0 atm,in which the reaction has a bigger spontaneity capability,equi-librium constant (K) and higher rate constant (k).展开更多
The insertion reaction mechanism of CBr_2 with CH_3CH_O has been studied by using the B3LYP/6-31G(d) method. The geometries of reactions, transition state and products were completely optimized. All the energy of the ...The insertion reaction mechanism of CBr_2 with CH_3CH_O has been studied by using the B3LYP/6-31G(d) method. The geometries of reactions, transition state and products were completely optimized. All the energy of the species was obtained at the CCSD(T)/6-31G(d) level. All the transition state is verified by the vibrational analysis and the internal reaction coordinate (IRC) calculations. The results show that the propionaldehyde (~HP1) is the main product of CH_2 insertion with CH_3CH_O. The calculated results indicated that all the major pathways of the reaction were obtained on the singlet potential energy surface. The singlet CBr_2 not only can insert the C_α-H [reaction I(1)]) but also can react with C_β-H [reaction II(1)]. The statistical thermodynamics and Eyring transition state theory with Wigner correc- tion are used to study the thermodynamic and kinetic characters of I(1) and II(1) in temperature range from 100 to 2200 K. The results show that the appropriate reaction temperature rang is 250 to 1750 K and 250 to 1600 K at 1.0 atm for I(1) and II(1) respectively. The rate constant and equilibrium constant are distinct in the range from 250 to 1000 K so that I(1) more easily occurs, while the reactions are not selected in the temperature range of 1000-1600展开更多
基金the fund of Tianshui Normal University (Grant No. TSA0604)
文摘The insertion reaction mechanism of CBr2 with CH3CH2O has been studied by using the B3LYP/6-311G(d) and CCSD(T)/6-311G(d) at single point. The geometries of reactions,transition state and products were completely optimized. All the transition state is verified by the vibrational analysis and the internal re-action coordinate (IRC) calculations. The results show that reaction (1) is the dominant reaction path,which proceeds via two steps: i) two reactants form an intermediate (IM1),which is an exothermal re-action of 8.62 kJ·mol?1 without energy barrier; ii) P1 is obtained via the TS1 and the H-shift,in which the energy barrier is 44.53 kJ·mol?1. The statistical thermodynamics and Eyring transition state theory with Wigner correction are used to study the thermodynamic and kinetic characters of this reaction in temperature range from 100 to 2200 K. The results show that the appropriate reaction temperature ranges from 200 to 1900 K at 1.0 atm,in which the reaction has a bigger spontaneity capability,equi-librium constant (K) and higher rate constant (k).
基金Supported by the Research Fund of Gangsu Province (Grant No. 0708-11)Tianshui Normal University (Grant No. TSA0604)
文摘The insertion reaction mechanism of CBr_2 with CH_3CH_O has been studied by using the B3LYP/6-31G(d) method. The geometries of reactions, transition state and products were completely optimized. All the energy of the species was obtained at the CCSD(T)/6-31G(d) level. All the transition state is verified by the vibrational analysis and the internal reaction coordinate (IRC) calculations. The results show that the propionaldehyde (~HP1) is the main product of CH_2 insertion with CH_3CH_O. The calculated results indicated that all the major pathways of the reaction were obtained on the singlet potential energy surface. The singlet CBr_2 not only can insert the C_α-H [reaction I(1)]) but also can react with C_β-H [reaction II(1)]. The statistical thermodynamics and Eyring transition state theory with Wigner correc- tion are used to study the thermodynamic and kinetic characters of I(1) and II(1) in temperature range from 100 to 2200 K. The results show that the appropriate reaction temperature rang is 250 to 1750 K and 250 to 1600 K at 1.0 atm for I(1) and II(1) respectively. The rate constant and equilibrium constant are distinct in the range from 250 to 1000 K so that I(1) more easily occurs, while the reactions are not selected in the temperature range of 1000-1600