We report an all-fiber, all-polarization maintaining(PM) source of widely tunable(1800–2000 nm) ultrashort pulses based on the amplification of coherent self-frequency-shifted solitons generated in a highly nonlinear...We report an all-fiber, all-polarization maintaining(PM) source of widely tunable(1800–2000 nm) ultrashort pulses based on the amplification of coherent self-frequency-shifted solitons generated in a highly nonlinear fiber pumped with an Er-doped fiber laser. The system delivers sub-100 fs pulses with energies up to 8.6 nJ and is built entirely from PM optical fibers, without any free-space optics. The all-fiber alignment-free design significantly increases the suitability of such a source for field deployments.展开更多
We report generation of sub-100 fs pulses tunable from 1700 to 2100 nm via Raman soliton self-frequency shift.The nonlinear shift occurs in a highly nonlinear fiber, which is pumped by an Er-doped fiber laser. The who...We report generation of sub-100 fs pulses tunable from 1700 to 2100 nm via Raman soliton self-frequency shift.The nonlinear shift occurs in a highly nonlinear fiber, which is pumped by an Er-doped fiber laser. The whole system is fully fiberized, without the use of any free-space optics. Thanks to its exceptional simplicity, the setup can be considered as an alternative to mode-locked Tm-and Ho-doped fiber lasers.展开更多
基金Ministerstwo Nauki i Szkolnictwa Wyzszego(MNi SW)(IP2015 072674)Statutory Funds of the Faculty of Electronics,Politechnika Wroclawska(PWr)
文摘We report an all-fiber, all-polarization maintaining(PM) source of widely tunable(1800–2000 nm) ultrashort pulses based on the amplification of coherent self-frequency-shifted solitons generated in a highly nonlinear fiber pumped with an Er-doped fiber laser. The system delivers sub-100 fs pulses with energies up to 8.6 nJ and is built entirely from PM optical fibers, without any free-space optics. The all-fiber alignment-free design significantly increases the suitability of such a source for field deployments.
基金Narodowe Centrum Nauki(NCN)(2014/13/D/ST7/02090,2014/13/D/ST7/02143)Wroclaw University of Science and Technology(0401/0094/16)
文摘We report generation of sub-100 fs pulses tunable from 1700 to 2100 nm via Raman soliton self-frequency shift.The nonlinear shift occurs in a highly nonlinear fiber, which is pumped by an Er-doped fiber laser. The whole system is fully fiberized, without the use of any free-space optics. Thanks to its exceptional simplicity, the setup can be considered as an alternative to mode-locked Tm-and Ho-doped fiber lasers.