期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
土地利用驱动的土壤性状变化影响微生物群落结构和功能 被引量:13
1
作者 吴希慧 王蕊 +5 位作者 高长青 高胜 杜兰兰 khan asif BARMON Milon 郭胜利 《生态学报》 CAS CSCD 北大核心 2021年第20期7989-8002,共14页
微生物在调节陆地生态系统地球化学循环过程中具有重要作用。土地利用方式改变显著影响土壤微生物群落结构和功能,但对土地利用驱动的土壤性状变化与微生物群落结构和功能关系的研究相对匮乏。依托长期定位监测试验(始于1984年),通过16S... 微生物在调节陆地生态系统地球化学循环过程中具有重要作用。土地利用方式改变显著影响土壤微生物群落结构和功能,但对土地利用驱动的土壤性状变化与微生物群落结构和功能关系的研究相对匮乏。依托长期定位监测试验(始于1984年),通过16S rRNA基因片段和ITS高通量测序,研究了土地利用方式(裸地、农田、草地)驱动的土壤碳氮变化对微生物群落结构和功能的影响。结果表明:对于细菌群落而言,裸地中α-多样性最高、其次是草地、农田中最低,农田和草地中细菌优势菌群变形菌(Proteobacteria)和放线菌门(Actinobacteria)相对丰度较裸地低4.5%、3.9%和5.5%、3.8%;对于真菌群落而言,裸地子囊菌门(Ascomycota)相对丰度最高、农田次之、草地最低;化能异养型、好氧化能异养型细菌相对丰度裸地显著高于农田和草地(P<0.05),而硝化型和好氧氨氧化型细菌裸地显著低于农田和草地(P<0.05);腐生型真菌相对丰度大小排序为:裸地>农田>草地。细菌群落变化主要与土壤容重、全氮、矿质氮、C∶N比和微生物量碳有关,而真菌群落与土壤矿质氮有关。细菌和真菌功能菌群主要受土壤容重、土壤有机碳、土壤全氮、C∶N比和微生物量碳影响。因此,土壤容重、土壤全氮、土壤有机碳、C∶N比、微生物量碳、矿质氮差异可能是影响不同土地利用方式中微生物群落和功能变化的主要因素。 展开更多
关键词 土地利用方式 细菌群落 真菌群落 功能结构
下载PDF
High Accuracy Network Cardinalities Estimation by Step Sampling Revision on GPU
2
作者 Jie Xu Qun Wang +1 位作者 Yifan Wang khan asif 《Computers, Materials & Continua》 SCIE EI 2020年第9期1819-1844,共26页
Host cardinality estimation is an important research field in network management and network security.The host cardinality estimation algorithm based on the linear estimator array is a common method.Existing algorithm... Host cardinality estimation is an important research field in network management and network security.The host cardinality estimation algorithm based on the linear estimator array is a common method.Existing algorithms do not take memory footprint into account when selecting the number of estimators used by each host.This paper analyzes the relationship between memory occupancy and estimation accuracy and compares the effects of different parameters on algorithm accuracy.The cardinality estimating algorithm is a kind of random algorithm,and there is a deviation between the estimated results and the actual cardinalities.The deviation is affected by some systematical factors,such as the random parameters inherent in linear estimator and the random functions used to map a host to different linear estimators.These random factors cannot be reduced by merging multiple estimators,and existing algorithms cannot remove the deviation caused by such factors.In this paper,we regard the estimation deviation as a random variable and proposed a sampling method,recorded as the linear estimator array step sampling algorithm(L2S),to reduce the influence of the random deviation.L2S improves the accuracy of the estimated cardinalities by evaluating and remove the expected value of random deviation.The cardinality estimation algorithm based on the estimator array is a computationally intensive algorithm,which takes a lot of time when processing high-speed network data in a serial environment.To solve this problem,a method is proposed to port the cardinality estimating algorithm based on the estimator array to the Graphics Processing Unit(GPU).Experiments on real-world high-speed network traffic show that L2S can reduce the absolute bias by more than 22%on average,and the extra time is less than 61 milliseconds on average. 展开更多
关键词 Network security cardinality estimating parallel computing sampling revision
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部