Pockets in proteins have been known to be very important for the life process. There have been several studies in the past to automatically extract the pockets from the structure information of known proteins. However...Pockets in proteins have been known to be very important for the life process. There have been several studies in the past to automatically extract the pockets from the structure information of known proteins. However, it is difficult to find a study comparing the precision of the extracted pockets from known pockets on the protein. In this paper, we propose an algorithm for extracting pockets from structure data of proteins and analyze the quality of the algorithm by comparing the extracted pockets with some known pockets. These results in this paper can be used to set the parameter values of the pocket extraction algorithm for getting better results.展开更多
We present a novel armature structure for 3D articulated shapes, called SBall short for skeletal balls, which includes two parts: a one-dimensional skeleton and incident balls. Our algorithm mainly focuses on constru...We present a novel armature structure for 3D articulated shapes, called SBall short for skeletal balls, which includes two parts: a one-dimensional skeleton and incident balls. Our algorithm mainly focuses on constructing the armature structure. This structure is based on an approximation skeleton which is homotopy equivalent to the shape. Each ball in the structure connects a skeletal joint and an interior region of the shape. The boundary vertices on the shape surface are attached onto the SBall using the power diagram of the ball set. A bilateral O^tering algorithm and a variational segmentation algorithm are proposed to enhance the quality of SBall. Finally, applications of this structure are discussed.展开更多
基金Project supported by Creative Research Initiative from the Ministry of Science and Technology (MOST), Korea. BHAK Jonghwa is supported by Biogreen21 Fund and MOST Funds, Korea
文摘Pockets in proteins have been known to be very important for the life process. There have been several studies in the past to automatically extract the pockets from the structure information of known proteins. However, it is difficult to find a study comparing the precision of the extracted pockets from known pockets on the protein. In this paper, we propose an algorithm for extracting pockets from structure data of proteins and analyze the quality of the algorithm by comparing the extracted pockets with some known pockets. These results in this paper can be used to set the parameter values of the pocket extraction algorithm for getting better results.
基金Supported by the National Natural Science Foundation of China(61202278 and 61222206)the Zhejiang Natural Science Foundation of China(Y1111101)
文摘We present a novel armature structure for 3D articulated shapes, called SBall short for skeletal balls, which includes two parts: a one-dimensional skeleton and incident balls. Our algorithm mainly focuses on constructing the armature structure. This structure is based on an approximation skeleton which is homotopy equivalent to the shape. Each ball in the structure connects a skeletal joint and an interior region of the shape. The boundary vertices on the shape surface are attached onto the SBall using the power diagram of the ball set. A bilateral O^tering algorithm and a variational segmentation algorithm are proposed to enhance the quality of SBall. Finally, applications of this structure are discussed.