In this paper, we design and fabricate a 3D scaffold using rapid prototyping (RP) technology for tissue engineering. The scaffold should have a three-dimensional interconnected pore network. We fabricate a polycaprola...In this paper, we design and fabricate a 3D scaffold using rapid prototyping (RP) technology for tissue engineering. The scaffold should have a three-dimensional interconnected pore network. We fabricate a polycaprolactone (PCL) scaffold with interconnecting pores and uniform porosity for cell ingrowth using a 3D plotting system. In order to keep the three dimensional shape under mechanical loading while implanted, we design an oscillating nozzle system to increase elastic modulus and yield strength of PCL strand. We characterize the influence of pore geometry, compressive modulus of the scaffold, elastic modulus and yield strength of the strand using SEM, dynamical mechanical analysis (DMA) and Nano-UTM. Finally the cell responses on scaffolds are observed.展开更多
基金supported by the Basic Research Program of the Korea Institute of Machinery & Materials (KIMM) of Korea (Grant No 1350013267)
文摘In this paper, we design and fabricate a 3D scaffold using rapid prototyping (RP) technology for tissue engineering. The scaffold should have a three-dimensional interconnected pore network. We fabricate a polycaprolactone (PCL) scaffold with interconnecting pores and uniform porosity for cell ingrowth using a 3D plotting system. In order to keep the three dimensional shape under mechanical loading while implanted, we design an oscillating nozzle system to increase elastic modulus and yield strength of PCL strand. We characterize the influence of pore geometry, compressive modulus of the scaffold, elastic modulus and yield strength of the strand using SEM, dynamical mechanical analysis (DMA) and Nano-UTM. Finally the cell responses on scaffolds are observed.