Microstructure and texture of Ti-Nb-Si based alloys, prepared by water quenching from β-phase field, cold rolling and recrystallization heat treatment followed by water quenching, were investigated in terms of optica...Microstructure and texture of Ti-Nb-Si based alloys, prepared by water quenching from β-phase field, cold rolling and recrystallization heat treatment followed by water quenching, were investigated in terms of optical microstructure and analysis of X-ray pole figure result. In as-quenched sample, relatively random distribution of pole figure was detected without showing a specific texture component. In as-cold rolled sample, however, it is found well-developed several texture components consisting of rotated cube, α-fiber and γ-fiber texture components which are frequently observed in bcc-structured metals and alloys were found. Therefore, texture components developed in the present alloys are closely related to the deformation of β-phase even though small amount of α″ phase co-exist in the microstructure. In recrystallized sample, α-fiber texture component is weakly detected while the other texture components, rotated cube and γ-fiber components, appears to be relatively unchanged. No additional texture components were detected besides those texture components observed in the cold rolled samples.展开更多
文摘Microstructure and texture of Ti-Nb-Si based alloys, prepared by water quenching from β-phase field, cold rolling and recrystallization heat treatment followed by water quenching, were investigated in terms of optical microstructure and analysis of X-ray pole figure result. In as-quenched sample, relatively random distribution of pole figure was detected without showing a specific texture component. In as-cold rolled sample, however, it is found well-developed several texture components consisting of rotated cube, α-fiber and γ-fiber texture components which are frequently observed in bcc-structured metals and alloys were found. Therefore, texture components developed in the present alloys are closely related to the deformation of β-phase even though small amount of α″ phase co-exist in the microstructure. In recrystallized sample, α-fiber texture component is weakly detected while the other texture components, rotated cube and γ-fiber components, appears to be relatively unchanged. No additional texture components were detected besides those texture components observed in the cold rolled samples.