期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Magnetotail dipolarization fronts and particle acceleration:A review 被引量:4
1
作者 Huishan FU Elena EGRIGORENKO +6 位作者 Christine GABRIELSE Chengming LIU San LU kjhwang Xuzhi ZHOU Zhe WANG Fang CHEN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第2期235-256,共22页
In this paper, the particle acceleration processes around magnetotail dipolarization fronts(DFs) were reviewed. We summarize the spacecraft observations(including Cluster, THEMIS, MMS) and numerical simulations(includ... In this paper, the particle acceleration processes around magnetotail dipolarization fronts(DFs) were reviewed. We summarize the spacecraft observations(including Cluster, THEMIS, MMS) and numerical simulations(including MHD, testparticle, hybrid, LSK, PIC) of these processes. Specifically, we(1) introduce the properties of DFs at MHD scale, ion scale, and electron scale,(2) review the properties of suprathermal electrons with particular focus on the pitch-angle distributions,(3)define the particle-acceleration process and distinguish it from the particle-heating process,(4) identify the particle-acceleration process from spacecraft measurements of energy fluxes, and(5) quantify the acceleration efficiency and compare it with other processes in the magnetosphere(e.g., magnetic reconnection and radiation-belt acceleration processes). We focus on both the acceleration of electrons and ions(including light ions and heavy ions). Regarding electron acceleration, we introduce Fermi,betatron, and non-adiabatic acceleration mechanisms;regarding ion acceleration, we present Fermi, betatron, reflection, resonance, and non-adiabatic acceleration mechanisms. We also discuss the unsolved problems and open questions relevant to this topic, and suggest directions for future studies. 展开更多
关键词 Dipolarization front Electron acceleration Ion acceleration Magnetic reconnection REVIEW Reconnection front
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部