期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
具有源项的等熵气体动力学方程组全局解的存在性
1
作者 陆云光 彭跃军 klingenberg christian 《中国科学(A辑)》 CSCD 北大核心 2010年第1期1-10,共10页
本文我们证明了具有源项的等熵气体动力学方程组(1.2)全局解的存在性.为此,我们构造正则双曲方程组(1.1)去逼近非齐次等熵气体动力学方程组(1.2).首先,对每一个固定的逼近参数δ和一般化的P(ρ)条件,我们证明了带有界初始条件(1.4)的Cau... 本文我们证明了具有源项的等熵气体动力学方程组(1.2)全局解的存在性.为此,我们构造正则双曲方程组(1.1)去逼近非齐次等熵气体动力学方程组(1.2).首先,对每一个固定的逼近参数δ和一般化的P(ρ)条件,我们证明了带有界初始条件(1.4)的Cauchy问题(1.1)的全局熵解的存在性.其次,令∈=o(δ),我们得到了方程组(1.2)的形如η(ρ,u)=ρH(ρ,u)(与Chen和LeFloch(2003)相同)的弱熵对的H_(loc)^(-1)紧性的完整证明.最后,将Chen和LeFloch(2003)给出的关于P(ρ)的条件应用到定理1和定理2的结果中,我们得到了带有界初值(1.4)的Cauchy问题(1.2)的熵解的全局存在性. 展开更多
关键词 等嫡气体动力学方程组 全局熵解 Hloc^-1紧性 补偿列紧方法
原文传递
Existence of global solutions to isentropic gas dynamics equations with a source term
2
作者 klingenberg christian 《Science China Mathematics》 SCIE 2010年第1期115-124,共10页
In this paper we prove existence of isentropic gas dynamic equations with a source term (1.2). To this end we construct a sequence of regular hyperbolic systems (1.1) to approximate the inhomogeneous system of isentro... In this paper we prove existence of isentropic gas dynamic equations with a source term (1.2). To this end we construct a sequence of regular hyperbolic systems (1.1) to approximate the inhomogeneous system of isentropic gas dynamics (1.2). First,for each fixed approximation parameter δ and very general condition on P (ρ),we establish the existence of entropy solutions for the Cauchy problem (1.1) with bounded initial date (1.4). Second,letting=o(δ),we obtain a complete proof of the H-1loc compactness of weak entropy pairs of system (1.2) in the form η(ρ,u) =ρH(ρ,u) given in Chen-LeFloch (2003). Finally,for the conditions of P(ρ) given in Chen-LeFloch (2003),applied to the results in Theorems 1 and 2,we obtain the global existence of entropy solutions for the Cauchy problem (1.2) with bounded initial date (1.4). 展开更多
关键词 ISENTROPIC gas dynamics system global ENTROPY solution COMPACTNESS in H-loc1 compensated COMPACTNESS method
原文传递
Regularity of Viscous Solutions for a Degenerate Non-linear Cauchy Problem
3
作者 SASTOQUE Eric Hernandez klingenberg christian +1 位作者 RENDON Leonardo JUAJIBIOY Juan C. 《Journal of Partial Differential Equations》 CSCD 2016年第1期14-21,共8页
We consider the Cauchy problem for a class of nonlinear degenerate parabolic equation with forcing. By using the vanishing viscosity method it is possible to construct a generalized solution. Moreover, this solution i... We consider the Cauchy problem for a class of nonlinear degenerate parabolic equation with forcing. By using the vanishing viscosity method it is possible to construct a generalized solution. Moreover, this solution is a Lipschitz function on the spatial variable and Holder continuous with exponent 1/2 on the temporal variable. 展开更多
关键词 Viscosity solution Holder estimates Holder continuity.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部