期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
融合蛋白ABD-Fc-IL-2的真核表达及其生物学活性鉴定
1
作者 柴欣秀 张波 +2 位作者 王静娜 孔道春 郭睿 《中国生物制品学杂志》 CAS CSCD 北大核心 2023年第4期406-410,418,共6页
目的 真核表达融合蛋白ABD-Fc-IL-2,并检测其生物学活性。方法 通过直接PCR及重叠延伸PCR法扩增目的基因SP-ABD-Fc-IL-2,连接至载体pcDNA3.1(+),获得重组质粒pcDNA3.1/SP-ABD-Fc-IL-2。将重组质粒转染CHO-S细胞表达融合蛋白ABD-Fc-IL-2... 目的 真核表达融合蛋白ABD-Fc-IL-2,并检测其生物学活性。方法 通过直接PCR及重叠延伸PCR法扩增目的基因SP-ABD-Fc-IL-2,连接至载体pcDNA3.1(+),获得重组质粒pcDNA3.1/SP-ABD-Fc-IL-2。将重组质粒转染CHO-S细胞表达融合蛋白ABD-Fc-IL-2,并进行Protein A beads亲和层析纯化。Western blot法检测纯化融合蛋白的特异性,CTLL-2/MTT细胞增殖比色法测定其生物学活性,pull down/Western blot法检测融合蛋白中链球菌蛋白G的白蛋白结合结构域(albumin-binding domain,ABD)与人血清白蛋白(human serum albumin,HSA)的相互作用。结果重组质粒pcDNA3.1/SP-ABD-Fc-IL-2经双酶切及测序鉴定,证明构建正确。纯化融合蛋白ABD-Fc-IL-2纯度达90%,可与鼠抗IL-2单克隆抗体发生特异性结合,生物学活性为3.29×108IU/mL,融合蛋白中ABD与HSA可相互结合。结论 真核表达的融合蛋白ABD-Fc-IL-2具有较高的生物学活性,可促进CTLL-2细胞增殖,且保持了ABD片段与HSA结合的能力。 展开更多
关键词 融合蛋白ABD-Fc-IL-2 基因重组 真核表达 生物学活性
原文传递
藤黄节杆菌ATCC21606的全基因组测序及序列分析 被引量:1
2
作者 谷璐婷 李凌彦 +1 位作者 孔道春 易发平 《基因组学与应用生物学》 CAS CSCD 北大核心 2020年第5期2071-2078,共8页
藤黄节杆菌(Arthrobacter luteus,A.luteus)ATCC 21606是一种革兰氏阳性短杆状的放线菌。该菌分泌的溶菌酶(Lyticase)能够有效裂解酵母细胞壁,同时能分泌限制性核酸内切酶AluⅠ和热稳定的黄嘌呤氧化酶,但目前还没有该菌株的全基因组序... 藤黄节杆菌(Arthrobacter luteus,A.luteus)ATCC 21606是一种革兰氏阳性短杆状的放线菌。该菌分泌的溶菌酶(Lyticase)能够有效裂解酵母细胞壁,同时能分泌限制性核酸内切酶AluⅠ和热稳定的黄嘌呤氧化酶,但目前还没有该菌株的全基因组序列相关的报道。本研究首先通过对A.luteus ATCC 21606菌株的基因组进行高通量测序;再利用SOAPdenovo、GeneMarks等软件对基因组进行组装和组分分析;接着与COG、GO、KEGG、NR、Swiss-Prot和CAZy数据库比对进行基因功能注释;并利用antiSMASH软件进行次级代谢产物合成基因簇预测;最终得到大小为4209480 bp的全基因组序列,GC含量为74.68%,共预测到编码基因3741个。基因序列已提交至美国国立生物技术信息中心(NCBI)的GenBank数据库,登录号为RQIK000-00000。本研究首次报道了A.luteus ATCC 21606的全基因组序列,为后续该菌株的功能基因、代谢产物合成途径及比较基因组学等相关研究提供基础。 展开更多
关键词 藤黄节杆菌(Arthrobacter luteus) 溶菌酶 全基因组测序 基因注释 基因簇
原文传递
Mechanism of chromosomal DNA replication initiation and replication fork stabilization in eukaryotes 被引量:3
3
作者 WU LiHong LIU Yang kong daochun 《Science China(Life Sciences)》 SCIE CAS 2014年第5期482-487,共6页
Chromosomal DNA replication is one of the central biological events occurring inside cells. Due to its large size, the replica-tion of genomic DNA in eukaryotes initiates at hundreds to tens of thousands of sites call... Chromosomal DNA replication is one of the central biological events occurring inside cells. Due to its large size, the replica-tion of genomic DNA in eukaryotes initiates at hundreds to tens of thousands of sites called DNA origins so that the replication could be completed in a limited time. Further, eukaryotic DNA replication is sophisticatedly regulated, and this regulation guarantees that each origin fires once per S phase and each segment of DNA gets duplication also once per cell cycle. The first step of replication initiation is the assembly of pre-replication complex (pre-RC). Since 1973, four proteins, Cdc6/Cdcl8, MCM, ORC and Cdtl, have been extensively studied and proved to be pre-RC components. Recently, a novel pre-RC compo- nent called Sapl/Girdin was identified. Sapl/Girdin is required for loading Cdcl8/Cdc6 to origins for pre-RC assembly in the fission yeast and human cells, respectively. At the transition of G1 to S phase, pre-RC is activated by the two kinases, cy- clin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), and subsequently, RPA, primase-polct, PCNA, topoisomer-ase, Cdc45, polδ and pole are recruited to DNA origins for creating two bi-directional replication forks and initiating DNA replication. As replication forks move along chromatin DNA, they frequently stall due to the presence of a great number of replication barriers on chromatin DNA, such as secondary DNA structures, protein/DNA complexes, DNA lesions, gene tran-scription. Stalled forks must require checkpoint regulation for their stabilization. Otherwise, stalled forks will collapse, which results in incomplete DNA replication and genomic instability. This short review gives a concise introduction regarding the current understanding of replication initiation and replication fork stabilization. 展开更多
关键词 DNA replication origins pre-RC assembly replication fork stability S phase checkpoint
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部