Haptophytes(Eukaryota,Hacrobia)play a crucial role in the energy budget and element cycling of diverse aquatic ecosystems due to their ability to engage in both phototrophic and mixotrophic nutritional modes.Neverthel...Haptophytes(Eukaryota,Hacrobia)play a crucial role in the energy budget and element cycling of diverse aquatic ecosystems due to their ability to engage in both phototrophic and mixotrophic nutritional modes.Nevertheless,there is a significant lack of knowledge regarding the short-term variations,such as diel dynamics,of their ecological features.During a short time frame in the summer of 2018,samples were collected from three distinct water layers in the South China Sea,including surface water,the deep chlorophyll maximum(DCM)layer,and 200 m depth.Fluorescence in situ hybridization coupled with tyramide signal amplification was used to quantify haptophyte cell abundance.Most haptophyte communities in all three water layers were composed of cells 2-5μm in size,while the proportion of cells<2μm increased with water depth.High-throughput sequencing of the V4 hypervariable regions of the SSU rRNA revealed that Chrysochromulina and Phaeocystis predominated the community,and the former was more abundant in the surface water and 200 m depth and the latter was more abundant in the DCM layer.Higher abundance of small cells(<2μm and 2-5μm)during the night was found compared to the day time,whereas large cells(5-10μm and 10-20μm)were more prevalent during the day time.The results of correlation analyses showed that haptophyte abundance was possibly impacted by both environmental biotic(heterotrophic nanoflagellates,heterotrophic bacteria,and viruses)and abiotic(temperature,salinity,and nutrients)factors.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42276095,42188102,42141003,and U20A20103)the Open Innovation Fund for Undergraduate Students of Xiamen University,and Ocean Negative Carbon Emissions(ONCE)program。
文摘Haptophytes(Eukaryota,Hacrobia)play a crucial role in the energy budget and element cycling of diverse aquatic ecosystems due to their ability to engage in both phototrophic and mixotrophic nutritional modes.Nevertheless,there is a significant lack of knowledge regarding the short-term variations,such as diel dynamics,of their ecological features.During a short time frame in the summer of 2018,samples were collected from three distinct water layers in the South China Sea,including surface water,the deep chlorophyll maximum(DCM)layer,and 200 m depth.Fluorescence in situ hybridization coupled with tyramide signal amplification was used to quantify haptophyte cell abundance.Most haptophyte communities in all three water layers were composed of cells 2-5μm in size,while the proportion of cells<2μm increased with water depth.High-throughput sequencing of the V4 hypervariable regions of the SSU rRNA revealed that Chrysochromulina and Phaeocystis predominated the community,and the former was more abundant in the surface water and 200 m depth and the latter was more abundant in the DCM layer.Higher abundance of small cells(<2μm and 2-5μm)during the night was found compared to the day time,whereas large cells(5-10μm and 10-20μm)were more prevalent during the day time.The results of correlation analyses showed that haptophyte abundance was possibly impacted by both environmental biotic(heterotrophic nanoflagellates,heterotrophic bacteria,and viruses)and abiotic(temperature,salinity,and nutrients)factors.