以液压型风力发电机组为研究对象,研究液压型机组低电压穿越控制问题。结合风电机组低电压穿越要求和液压型风力发电机组工作原理,提出一种比例节流阀开口度与变量马达摆角双变量联合控制的低电压穿越的控制方法。建立机组的数学模型,...以液压型风力发电机组为研究对象,研究液压型机组低电压穿越控制问题。结合风电机组低电压穿越要求和液压型风力发电机组工作原理,提出一种比例节流阀开口度与变量马达摆角双变量联合控制的低电压穿越的控制方法。建立机组的数学模型,基于能量耗散原理和动态面控制方法构造低电压穿越双变量控制器。依托30 k VA液压型风力发电机组半物理仿真实验台进行仿真和实验研究,实现了低电压穿越过程中机组液压系统传输功率和输出转速的高精度控制,为液压型机组的低电压穿越控制的进一步研究奠定基础。展开更多
Analysis as well as application of ultra-high pressure hydraulic system and elements has become a trend. The structure and operation principle of a new type of ultra-high pressure pipe joint is introduced. The structu...Analysis as well as application of ultra-high pressure hydraulic system and elements has become a trend. The structure and operation principle of a new type of ultra-high pressure pipe joint is introduced. The structure of the new type of ultra-high pressure pipe joint is simple and is easy to be produced. The finite element model on two working conditions( preload condition with 30 N·m torque and static-loading condition with 70 MPa pressure) is built and computed. The width of contact area,the equivalent stress status,as well as the contact pressure status are plotted and analyzed. According to the national standard,test on air-tightness,blasting,and cyclic endurance is conducted and the results show that the new type of ultra-high pressure pipe joint has the sealability for ultra-high pressure up to 70 MPa,and the DN6 ultra-high pressure pipe joint can provide effective seal under70 MPa fluid pressure. The research can provide a thinking and method on designing ultra-high pressure pipe joint and push forward the development of ultra-high pressure hydraulic system.展开更多
文摘以液压型风力发电机组为研究对象,研究液压型机组低电压穿越控制问题。结合风电机组低电压穿越要求和液压型风力发电机组工作原理,提出一种比例节流阀开口度与变量马达摆角双变量联合控制的低电压穿越的控制方法。建立机组的数学模型,基于能量耗散原理和动态面控制方法构造低电压穿越双变量控制器。依托30 k VA液压型风力发电机组半物理仿真实验台进行仿真和实验研究,实现了低电压穿越过程中机组液压系统传输功率和输出转速的高精度控制,为液压型机组的低电压穿越控制的进一步研究奠定基础。
基金Supported by the 2015 Industrial Transformation and Upgrading of Strong Base Project(TC150B5C0-29)the National Key Basic Research Program of China(2014CB046400)
文摘Analysis as well as application of ultra-high pressure hydraulic system and elements has become a trend. The structure and operation principle of a new type of ultra-high pressure pipe joint is introduced. The structure of the new type of ultra-high pressure pipe joint is simple and is easy to be produced. The finite element model on two working conditions( preload condition with 30 N·m torque and static-loading condition with 70 MPa pressure) is built and computed. The width of contact area,the equivalent stress status,as well as the contact pressure status are plotted and analyzed. According to the national standard,test on air-tightness,blasting,and cyclic endurance is conducted and the results show that the new type of ultra-high pressure pipe joint has the sealability for ultra-high pressure up to 70 MPa,and the DN6 ultra-high pressure pipe joint can provide effective seal under70 MPa fluid pressure. The research can provide a thinking and method on designing ultra-high pressure pipe joint and push forward the development of ultra-high pressure hydraulic system.