文摘养殖水体中溶解氧浓度一直是最重要的水质参数之一。为了精准地对水体溶解氧进行调控,提高养殖生产效率,降低养殖风险,该研究考虑外部天气条件对溶解氧的影响以及溶解氧自身的昼夜变化特征,提出一种基于正则化极限学习机(principal component analysis and clustering method optimized regularized extreme learning machine,PC-RELM)的养殖水体溶解氧数据流预测模型。首先,采用主成分分析法判断影响溶解氧浓度的强重要性因子,降低预测模型的数据维度;其次,利用熵权法计算各时刻点的天气环境指数,并利用快速动态时间规整算法(fast dynamic time warping,FastDTW)完成时间序列数据流在不同天气环境下的相似度度量;然后使用k-means算法对时间序列的相似度进行聚类分簇,并基于分簇结果完成正则化极限学习机预测模型的构建,实现溶解氧浓度的估算。最后将PC-RELM模型应用到无锡南泉试验基地养殖池塘的溶解氧预测调控过程中。试验结果表明:PC-RELM的预测均方根误差值(root mean square error,RMSE)为0.9619,与PLS-ELM(partial least squares optimized ELM)、最小二乘支持向量机(least square support vector machine,LSSVM)以及BP神经网络模型进行对比,其RMSE值分别降低了41.54%、54.58%和67.16%。该预测模型可以有效地捕捉不同天气条件下溶解氧的变化特点,具有较高的预测精度和效率。
文摘为了有效地指导水产养殖生产,提高溶解氧浓度预测的精度,提出了基于因子筛选和改进极限学习机(Extreme Learning Machine,ELM)的水产养殖溶解氧预测模型。首先,利用皮尔森相关系数法计算各影响因子与溶解氧浓度间的相关系数,提取强关联因子,降低预测模型的输入量维度;采用偏最小二乘算法(Partial Least Square,PLS)优化传统ELM神经网络,避免网络中隐含层共线性问题,保障输出权值的稳定性;然后,结合新型激活函数,构建水体溶解氧浓度预测模型。最后,将SPLS-ELM(Selection Based Partial Least Square Optimized-Extreme Learning Machine)预测模型应用到江苏省无锡市南泉基地某试验池塘的水体溶解氧预测中。试验结果表明:该模型的预测均方根误差为0.3232 mg/L,与最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)、BP神经网络、粒子群(Particle Swarm Optimization,PSO)优化LSSVM和遗传算法(Genetic Algorithm,GA)优化BP神经网络相比分别降低40.98%、44.48%、34.73%和44.18%。且该模型的运行时间仅0.6231s,预测精度和运行效率明显优于其他模型。该模型的溶解氧预测曲线接近真实溶解氧变化曲线,能够满足水产养殖实际生产对水体溶解氧预测的要求。