期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
全球油气开采诱发地震的研究现状与对策 被引量:9
1
作者 张捷 况文欢 +2 位作者 张雄 莫程康 张东晓 《地球与行星物理论评》 2021年第3期239-265,共27页
人工诱发地震现象已经有很久的历史.水库蓄水、采矿、地热开发、从地下提取液体或气体,或将液体注入地球内部都可能诱发地震.大量地震监测数据与科学分析结果显示:美国俄克拉何马州的地震剧增主要与页岩油气开采的废水回注量相关;加拿... 人工诱发地震现象已经有很久的历史.水库蓄水、采矿、地热开发、从地下提取液体或气体,或将液体注入地球内部都可能诱发地震.大量地震监测数据与科学分析结果显示:美国俄克拉何马州的地震剧增主要与页岩油气开采的废水回注量相关;加拿大阿尔伯塔省的地震剧增主要与页岩油气开采水力压裂的工作量相关;而荷兰罗宁根天然气田的传统天然气开采也同样诱发了较强的地震活动.在中国四川盆地的页岩油气开发区域,地震活动近几年也大幅度增强,但目前监测与科研工作较少,对某些地震成因尚有争议.目前研究诱发地震问题已成为学术界与工业界的一门专业学科.推断诱发地震,除了分析时空分布与工业活动的相关性之外,本文综述了该领域基于地震学、地质动力学、构造地质学的多种分析方法.如何在油气开采过程中减少诱发地震的灾害影响成为当前相关各界极为关注的科研问题,本文介绍了多个国家或地区建立的控制诱发地震的管理系统、基于地震大数据的诱发地震概率预测方法,以及基于地球物理与地质信息的综合诱发地震风险评估方法,并对我国控制诱发地震问题提出建设性意见. 展开更多
关键词 诱发地震 油气开采 水力压裂 废水回注 地震风险
下载PDF
Application of Machine Learning Methods in Arrival Time Picking of P Waves from Reservoir Earthquakes 被引量:2
2
作者 HU Jiupeng YU Ziye +3 位作者 kuang wenhuan WANG Weitao RUAN Xiang DAI Shigui 《Earthquake Research in China》 CSCD 2020年第3期343-357,共15页
Reservoir earthquake characteristics such as small magnitude and large quantity may result in low monitoring efficiency when using traditional methods.However,methods based on deep learning can discriminate the seismi... Reservoir earthquake characteristics such as small magnitude and large quantity may result in low monitoring efficiency when using traditional methods.However,methods based on deep learning can discriminate the seismic phases of small earthquakes in a reservoir and ensure rapid processing of arrival time picking.The present study establishes a deep learning network model combining a convolutional neural network(CNN) and recurrent neural network(RNN).The neural network training uses the waveforms of 60 000 small earthquakes within a magnitude range of 0.8-1.2 recorded by 73 stations near the Dagangshan Reservoir in Sichuan Province as well as the data of the manually picked P-wave arrival time.The neural network automatically picks the P-wave arrival time,providing a strong constraint for small earthquake positioning.The model is shown to achieve an accuracy rate of 90.7 % in picking P waves of microseisms in the reservoir area,with a recall rate reaching 92.6% and an error rate lower than 2%.The results indicate that the relevant network structure has high accuracy for picking the P-wave arrival times of small earthquakes,thus providing new technical measures for subsequent microseismic monitoring in the reservoir area. 展开更多
关键词 Deep Learning Phase Pick Reservoir Microseismic
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部