The study of nuclide production and its properties in the N=126 neutron-rich region is prevalent in nuclear physics and astrophysics research.The upcoming High-energy FRagment Separator(HFRS)at the High-Intensity heav...The study of nuclide production and its properties in the N=126 neutron-rich region is prevalent in nuclear physics and astrophysics research.The upcoming High-energy FRagment Separator(HFRS)at the High-Intensity heavy-ion Accelerator Facility(HIAF),an in-flight separator at relativistic energies,is characterized by high beam intensity,large ion-optical acceptance,high magnetic rigidity,and high momentum resolution power.This provides an opportunity to study the production and properties of neutron-rich nuclei around N=126.In this paper,an experimental scheme is proposed to produce neutron-rich nuclei around N=126 and simultaneously measure their mass and lifetime based on the HFRS separator;the feasibility of this scheme is evaluated through simulations.The results show that under the high-resolution optical mode,many new neutron-rich nuclei approaching the r-process abundance peak around A=195 can be produced for the first time,and many nuclei with unknown masses and lifetimes can be produced with high statistics.Using the time-of-flight corrected by the measured dispersive position and energy loss information,the cocktails produced from 208 Pb fragmentation can be unambiguously identified.Moreover,the masses of some neutron-rich nuclei near N=126 can be measured with high precision using the time-of-flight magnetic rigidity technique.This indicates that the HIAF-HFRS facility has the potential for the production and property research of neutron-rich nuclei around N=126,which is of great significance for expanding the chart of nuclides,developing nuclear theories,and understanding the origin of heavy elements in the universe.展开更多
Charge-changing cross section(σcc)measurements via the transmission method have recently seen significant progress with the aim of determining the charge radii of exotic nuclei.In this work,we report a newσcc measur...Charge-changing cross section(σcc)measurements via the transmission method have recently seen significant progress with the aim of determining the charge radii of exotic nuclei.In this work,we report a newσcc measurement of 304(9)MeV/nucleon^(28)Si on carbon at the second Radioactive Ion Beam Line in Lanzhou(RIBLL2)and describe the data analysis procedure in detail.This procedure is essential for evaluating the systematic uncertainty in the transmission method.The determinedσcc of 1125(11)mb is found to be consistent with the existing data at similar energies.The present work will serve as a reference forσcc determinations at RIBLL2.展开更多
基金supported by the High-Intensity heavy-ion Accelerator Facility (HIAF) project approved by the National Development and Reform Commission of China
文摘The study of nuclide production and its properties in the N=126 neutron-rich region is prevalent in nuclear physics and astrophysics research.The upcoming High-energy FRagment Separator(HFRS)at the High-Intensity heavy-ion Accelerator Facility(HIAF),an in-flight separator at relativistic energies,is characterized by high beam intensity,large ion-optical acceptance,high magnetic rigidity,and high momentum resolution power.This provides an opportunity to study the production and properties of neutron-rich nuclei around N=126.In this paper,an experimental scheme is proposed to produce neutron-rich nuclei around N=126 and simultaneously measure their mass and lifetime based on the HFRS separator;the feasibility of this scheme is evaluated through simulations.The results show that under the high-resolution optical mode,many new neutron-rich nuclei approaching the r-process abundance peak around A=195 can be produced for the first time,and many nuclei with unknown masses and lifetimes can be produced with high statistics.Using the time-of-flight corrected by the measured dispersive position and energy loss information,the cocktails produced from 208 Pb fragmentation can be unambiguously identified.Moreover,the masses of some neutron-rich nuclei near N=126 can be measured with high precision using the time-of-flight magnetic rigidity technique.This indicates that the HIAF-HFRS facility has the potential for the production and property research of neutron-rich nuclei around N=126,which is of great significance for expanding the chart of nuclides,developing nuclear theories,and understanding the origin of heavy elements in the universe.
基金Supported by the National Natural Science Foundation of China(U1832211,11961141004,11922501,11475014,11905260)the Western Light Project of Chinese Academy of Sciencesthe Natural Science Foundation of Anhui Province,China(2008085MA17)。
文摘Charge-changing cross section(σcc)measurements via the transmission method have recently seen significant progress with the aim of determining the charge radii of exotic nuclei.In this work,we report a newσcc measurement of 304(9)MeV/nucleon^(28)Si on carbon at the second Radioactive Ion Beam Line in Lanzhou(RIBLL2)and describe the data analysis procedure in detail.This procedure is essential for evaluating the systematic uncertainty in the transmission method.The determinedσcc of 1125(11)mb is found to be consistent with the existing data at similar energies.The present work will serve as a reference forσcc determinations at RIBLL2.