Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron micros...Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),electrochemical test and contact angle test.It can be found that the as-selective laser melted(as-SLMed)Ti−6Al−4V alloys showβcolumnar microstructure in building direction and nearly circular checkerboard microstructure in scanning direction,while the wrought and wrought+HT samples exhibit equiaxed microstructure.The as-SLMed Ti−6Al−4V alloy exhibits better corrosion resistance than the wrought and wrought+HT samples due to hydrophobicity,high grain boundary density and uniform distribution of alloying elements in simulated artificial saliva at 37℃.展开更多
Aiming at the interaction and coalescence of bubbles in gas–liquid two-phase flow, a multi-field coupling model was established to simulate deformation and dynamics of multi-bubble in gas–liquid two-phase flow by co...Aiming at the interaction and coalescence of bubbles in gas–liquid two-phase flow, a multi-field coupling model was established to simulate deformation and dynamics of multi-bubble in gas–liquid two-phase flow by coupling magnetic field, phase field, continuity equation, and momentum equation. Using the phase field method to capture the interface of two phases, the geometric deformation and dynamics of a pair of coaxial vertical rising bubbles under the applied uniform magnetic field in the vertical direction were investigated. The correctness of results is verified by mass conservation method and the comparison of the existing results. The results show that the applied uniform magnetic field can effectively shorten the distance between the leading bubble and the trailing bubble, the time of bubbles coalescence, and increase the velocity of bubbles coalescence. Within a certain range, as the intensity of the applied uniform magnetic field increases, the velocity of bubbles coalescence is proportional to the intensity of the magnetic field, and the time of bubbles coalescence is inversely proportional to the intensity of the magnetic field.展开更多
The attenuating effect of daidzein (DAI) on oxidative toxicity induced by Aroclor 1254 (A1254) was investigated in mouse testicular cells. Cells were exposed to A1254 alone or with DAI. The oxidative damage was estima...The attenuating effect of daidzein (DAI) on oxidative toxicity induced by Aroclor 1254 (A1254) was investigated in mouse testicular cells. Cells were exposed to A1254 alone or with DAI. The oxidative damage was estimated by measuring malondialdehyde (MDA) formation, superoxide dismutase (SOD) activity and glutathione (GSH) content. Results show that A1254 induced a decrease of germ cell number, an elevation in thiobarbituric acid reactive substances (TBARS) but a decrease in SOD activity and GSH content. However, simultaneous supplementation with DAI decreased TBARS level and increased SOD activity and GSH content. Consequently, dietary DAI may restore the intracellular antioxidant system to attenuate the oxidative toxicity of A1254 in testicular cells.展开更多
Sodium-ion batteries(SIBs)have emerged as one of the most promising candidates for next-generation energy storage systems because sodium is abundant in nature.The practical application of SIBs critically depends on de...Sodium-ion batteries(SIBs)have emerged as one of the most promising candidates for next-generation energy storage systems because sodium is abundant in nature.The practical application of SIBs critically depends on developing robust electrode materials with high specific capacity and long cycling life,developing suitable anode materials is even more challenging.Alloy-type anodes are attractive for their high gravimetric and volumetric specific capacities,demonstrating great potential for high-energy SIBs,however,huge volume swelling hampered their practical application.Given the encouraging breakthroughs on alloy anodes for SIBs,herein,we present a review of the up-to-date progress and works carried out with alloy-based anode materials for SIBs.We review the synthetic strategies and their detailed electrochemical performance.In particular,we extensively reveal the important roles of alloy-based anodes in the development of SIBs.Research progress of alloy-type anodes and their compounds for sodium storage is summarized.Specific efforts to enhance the electrochemical performance of the alloy-based anode materials are discussed.Finally,we proposed multi-component alloys/high-entropy alloys(HEAs)as further research directions for alloy-based anodes.展开更多
The effect of ginsenosides on proliferation of type A spermatogonia was investigated in 7-day-old mice. Spermatogonia were characterized by c-kit expression and cell proliferation was assessed by immunocytochemical de...The effect of ginsenosides on proliferation of type A spermatogonia was investigated in 7-day-old mice. Spermatogonia were characterized by c-kit expression and cell proliferation was assessed by immunocytochemical demonstration of proliferating cell nuclear antigen (PCNA). After 72-h culture, Sertoli cells formed a confluent monolayer to which numerous spermatogonial colonies attached. Spermatogonia were positive for c-kit staining and showed high proliferating activity by PCNA expression. Ginsenosides (1.0~10 μg/ml) significantly stimulated proliferation of spermatogonia. Activation of protein kinase C (PKC) elicited proliferation of spermatogonia at 10-8 to 10-7 mol/L and the PKC inhibitor H7 inhibited this effect. Likewise, ginsenosides-stimulated spermatogonial proliferation was suppressed by combined treatment of H7. These results indicate that the proliferating effect of ginsenosides on mouse type A spermatogonia might be mediated by a mechanism involving the PKC signal transduction pathway.展开更多
基金the financial support for this work from the National Natural Science Foundation of China(No.52205334)the Natural Science Foundation of Hunan Province,China(No.2022JJ40495)+2 种基金the Changsha Key Research and Development Project,China(No.kh2201275)the Changsha Municipal Natural Science Foundation,China(No.kq2202196)the Tribology Science Fund of State Key Laboratory of Tribology in Advanced Equipment,China(No.SKLTKF21B08)。
基金The authors are grateful for the financial supports from the National Key R&D Program of China(2017YFB1104100)the New Young Teachers Initiation Plan,China(18X100040027)+1 种基金the National Natural Science Foundation of China(51971142)the China Postdoctoral Science Foundation(19Z102060057).
文摘Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),electrochemical test and contact angle test.It can be found that the as-selective laser melted(as-SLMed)Ti−6Al−4V alloys showβcolumnar microstructure in building direction and nearly circular checkerboard microstructure in scanning direction,while the wrought and wrought+HT samples exhibit equiaxed microstructure.The as-SLMed Ti−6Al−4V alloy exhibits better corrosion resistance than the wrought and wrought+HT samples due to hydrophobicity,high grain boundary density and uniform distribution of alloying elements in simulated artificial saliva at 37℃.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51661020,11504149,and 11364024)the Postdoctoral Science Foundation of China(Grant No.2014M560371)the Funds for Distinguished Young Scientists of Lanzhou University of Technology(Grant No.J201304)。
文摘Aiming at the interaction and coalescence of bubbles in gas–liquid two-phase flow, a multi-field coupling model was established to simulate deformation and dynamics of multi-bubble in gas–liquid two-phase flow by coupling magnetic field, phase field, continuity equation, and momentum equation. Using the phase field method to capture the interface of two phases, the geometric deformation and dynamics of a pair of coaxial vertical rising bubbles under the applied uniform magnetic field in the vertical direction were investigated. The correctness of results is verified by mass conservation method and the comparison of the existing results. The results show that the applied uniform magnetic field can effectively shorten the distance between the leading bubble and the trailing bubble, the time of bubbles coalescence, and increase the velocity of bubbles coalescence. Within a certain range, as the intensity of the applied uniform magnetic field increases, the velocity of bubbles coalescence is proportional to the intensity of the magnetic field, and the time of bubbles coalescence is inversely proportional to the intensity of the magnetic field.
基金the Program for New Century Excellent Talentsin University of the Ministry of Education of China (No. NCET-05-0514)the Postdoctoral Science Foundation of China (No. 20060400325)
文摘The attenuating effect of daidzein (DAI) on oxidative toxicity induced by Aroclor 1254 (A1254) was investigated in mouse testicular cells. Cells were exposed to A1254 alone or with DAI. The oxidative damage was estimated by measuring malondialdehyde (MDA) formation, superoxide dismutase (SOD) activity and glutathione (GSH) content. Results show that A1254 induced a decrease of germ cell number, an elevation in thiobarbituric acid reactive substances (TBARS) but a decrease in SOD activity and GSH content. However, simultaneous supplementation with DAI decreased TBARS level and increased SOD activity and GSH content. Consequently, dietary DAI may restore the intracellular antioxidant system to attenuate the oxidative toxicity of A1254 in testicular cells.
基金the Key Research Program of Nanjing IPE Institute of Green Manufacturing Industry(No.E0010718)。
文摘Sodium-ion batteries(SIBs)have emerged as one of the most promising candidates for next-generation energy storage systems because sodium is abundant in nature.The practical application of SIBs critically depends on developing robust electrode materials with high specific capacity and long cycling life,developing suitable anode materials is even more challenging.Alloy-type anodes are attractive for their high gravimetric and volumetric specific capacities,demonstrating great potential for high-energy SIBs,however,huge volume swelling hampered their practical application.Given the encouraging breakthroughs on alloy anodes for SIBs,herein,we present a review of the up-to-date progress and works carried out with alloy-based anode materials for SIBs.We review the synthetic strategies and their detailed electrochemical performance.In particular,we extensively reveal the important roles of alloy-based anodes in the development of SIBs.Research progress of alloy-type anodes and their compounds for sodium storage is summarized.Specific efforts to enhance the electrochemical performance of the alloy-based anode materials are discussed.Finally,we proposed multi-component alloys/high-entropy alloys(HEAs)as further research directions for alloy-based anodes.
基金Project supported by the Program for New Century Excellent Talents in University of the Ministry of Education of China (No. NCET-05-0514)the Science and Technology Department of Zhejiang Province, China (No. 2008C22040)
文摘The effect of ginsenosides on proliferation of type A spermatogonia was investigated in 7-day-old mice. Spermatogonia were characterized by c-kit expression and cell proliferation was assessed by immunocytochemical demonstration of proliferating cell nuclear antigen (PCNA). After 72-h culture, Sertoli cells formed a confluent monolayer to which numerous spermatogonial colonies attached. Spermatogonia were positive for c-kit staining and showed high proliferating activity by PCNA expression. Ginsenosides (1.0~10 μg/ml) significantly stimulated proliferation of spermatogonia. Activation of protein kinase C (PKC) elicited proliferation of spermatogonia at 10-8 to 10-7 mol/L and the PKC inhibitor H7 inhibited this effect. Likewise, ginsenosides-stimulated spermatogonial proliferation was suppressed by combined treatment of H7. These results indicate that the proliferating effect of ginsenosides on mouse type A spermatogonia might be mediated by a mechanism involving the PKC signal transduction pathway.