期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Understanding sequence effect in DNA bending elasticity by molecular dynamic simulations 被引量:1
1
作者 Xiao-Wei Qiang Hai-Long Dong +2 位作者 kai-xin xiong Wenbing Zhang Zhi-Jie Tan 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第7期127-135,共9页
Structural elasticity of double-strand DNAs is very important for their biological functions such as DNA-ligand binding and DNA-protein recognition.By all-atom molecular dynamics simulations,we investigated the bendin... Structural elasticity of double-strand DNAs is very important for their biological functions such as DNA-ligand binding and DNA-protein recognition.By all-atom molecular dynamics simulations,we investigated the bending elasticity of DNA with three typical sequences including poly(A)-poly(T)(AA-TT),poly(AT)-poly(TA)(AT-TA),and a generic sequence(GENE).Our calculations indicate that,AA-TT has an apparently larger bending persistence length(P~63 nm)than GENE(P~49 nm)and AT-TA(P~48 nm)while the persistence length of AT-TA is only very slightly smaller than that of GENE,which agrees well with those from existing works.Moreover,through extensive electrostatic calculations,we found that the sequence-dependent bending elasticity is attributed to the sequence-dependent electrostatic bending energy for AA-TT,AT-TA and GENE,which is coupled to their backbone structures.Particularly,the apparently stronger bending stiffness of AA-TT is attributed to its narrower minor groove.Interestingly,for the three DNAs,we predicted the non-electrostatic persistence length of~17 nm,thus electrostatic interaction makes the major contribution to DNA bending elasticity.The mechanism of electrostatic energy dominating sequence effect in DNA bending elasticity is furtherly illustrated through the electrostatic calculations for a grooved coarse-grained DNA model where minor groove width and other microscopic structural parameters can be artificially adjusted. 展开更多
关键词 DNA elasticity molecular dynamic simulation persistence length electrostatic interaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部