: To enrich differentially expressed sequence tags (ESTs) for aluminum (Al) tolerance, cDNA subtraction libraries were generated from Al-stressed roots of two wheat (Triticum aestivum L.) near-isogenic lines (NILs) co...: To enrich differentially expressed sequence tags (ESTs) for aluminum (Al) tolerance, cDNA subtraction libraries were generated from Al-stressed roots of two wheat (Triticum aestivum L.) near-isogenic lines (NILs) contrasting in Al-tolerance gene(s) from the Al-tolerant cultivar Atlas 66, using suppression subtractive hybridization (SSH). Expression patterns of the ESTs were investigated with nylon filter arrays containing 614 cDNA clones from the subtraction library. Gene expression profiles from macroarray analysis indicated that 25 ESTs were upregulated in the tolerant NIL in response to Al stress. The result from Northern analysis of selected upregulated ESTs was similar to that from macroarray analysis. These highly expressed ESTs showed high homology with genes involved in signal transduction, oxidative stress alleviation, membrane structure, Mg2+ transportation, and other functions. Under Al stress, the Al-tolerant NIL may possess altered structure or function of the cell wall, plasma membrane, and mitochondrion. The wheat response to Al stress may involve complicated defense-related signaling and metabolic pathways. The present experiment did not detect any induced or activated genes involved in the synthesis of malate and other organic acids in wheat under Al-stress.展开更多
文摘: To enrich differentially expressed sequence tags (ESTs) for aluminum (Al) tolerance, cDNA subtraction libraries were generated from Al-stressed roots of two wheat (Triticum aestivum L.) near-isogenic lines (NILs) contrasting in Al-tolerance gene(s) from the Al-tolerant cultivar Atlas 66, using suppression subtractive hybridization (SSH). Expression patterns of the ESTs were investigated with nylon filter arrays containing 614 cDNA clones from the subtraction library. Gene expression profiles from macroarray analysis indicated that 25 ESTs were upregulated in the tolerant NIL in response to Al stress. The result from Northern analysis of selected upregulated ESTs was similar to that from macroarray analysis. These highly expressed ESTs showed high homology with genes involved in signal transduction, oxidative stress alleviation, membrane structure, Mg2+ transportation, and other functions. Under Al stress, the Al-tolerant NIL may possess altered structure or function of the cell wall, plasma membrane, and mitochondrion. The wheat response to Al stress may involve complicated defense-related signaling and metabolic pathways. The present experiment did not detect any induced or activated genes involved in the synthesis of malate and other organic acids in wheat under Al-stress.