In numerical simulations of the ion cyclotron range of frequencies(ICRF)wave heating scheme,core solvers usually focus on wave propagation and absorption mechanisms within the core plasma region.However,the realistic ...In numerical simulations of the ion cyclotron range of frequencies(ICRF)wave heating scheme,core solvers usually focus on wave propagation and absorption mechanisms within the core plasma region.However,the realistic scrape-off layer(SOL)plasma is usually simplified,making it difficult to have deeper understanding of wave propagation and absorption within the SOL.In this work,we employ a cold plasma assumption and an artificial absorption mechanism based on the approach of reference(Zhang et al 2022 Nucl.Fusion 62076032),to study wave propagation and absorption in the realistic SOL plasma of the EAST.During the exponential decay of the total coupled power with respect to the toroidal mode numbers,several fluctuations are observed in the case of low collisional frequencies.The fluctuations may be caused by the cavity modes associated with specific toroidal mode numbers.Due to the presence of cut-off densities,the edge power losses and the total coupled power exhibit different behaviors before and after the cut-off layer is“open”.Furthermore,the simulation results obtained from the kinetic model in reference(Zhang et al 2022 Nucl.Fusion 62076032)is discussed.This suggests that both the core-edge combined model and the artificial mechanism are capable of simulating wave propagation and absorption.展开更多
Anomalous transport in magnetically confined plasmas is investigated using temporal fractional transport equations.The use of temporal fractional transport equations means that the order of the partial derivative with...Anomalous transport in magnetically confined plasmas is investigated using temporal fractional transport equations.The use of temporal fractional transport equations means that the order of the partial derivative with respect to time is a fraction. In this case, the Caputo fractional derivative relative to time is utilized, because it preserves the form of the initial conditions. A numerical calculation reveals that the fractional order of the temporal derivative α(α ∈(0, 1), sub-diffusive regime) controls the diffusion rate. The temporal fractional derivative is related to the fact that the evolution of a physical quantity is affected by its past history, depending on what are termed memory effects. The magnitude of α is a measure of such memory effects. When α decreases, so does the rate of particle diffusion due to memory effects. As a result,if a system initially has a density profile without a source, then the smaller the α is, the more slowly the density profile approaches zero. When a source is added, due to the balance of the diffusion and fueling processes, the system reaches a steady state and the density profile does not evolve. As α decreases, the time required for the system to reach a steady state increases. In magnetically confined plasmas, the temporal fractional transport model can be applied to off-axis heating processes. Moreover, it is found that the memory effects reduce the rate of energy conduction and hollow temperature profiles can be sustained for a longer time in sub-diffusion processes than in ordinary diffusion processes.展开更多
Anomalous transport in magnetically confined plasmas is investigated by radial fractional transport equations.It is shown that for fractional transport models,hollow density profiles are formed and uphill transports c...Anomalous transport in magnetically confined plasmas is investigated by radial fractional transport equations.It is shown that for fractional transport models,hollow density profiles are formed and uphill transports can be observed regardless of whether the fractional diffusion coefficients(FDCs)are radially dependent or not.When a radially dependent FDC<D_(α)(r)1 is imposed,compared with the case under=D_(α)(r)1.0,it is observed that the position of the peak of the density profile is closer to the core.Further,it is found that when FDCs at the positions of source injections increase,the peak values of density profiles decrease.The non-local effect becomes significant as the order of fractional derivative a 1 and causes the uphill transport.However,as a 2,the fractional diffusion model returns to the standard model governed by Fick’s law.展开更多
基金supported by the National Key R&D Program of China(No.2022YFE03090000)the China Postdoctoral Science Foundation(No.2022M71490)+1 种基金National Natural Science Foundation of China(Nos.11925501 and 12275202)the Fundament Research Funds for the Central Universities(No.DUT22ZD215)。
文摘In numerical simulations of the ion cyclotron range of frequencies(ICRF)wave heating scheme,core solvers usually focus on wave propagation and absorption mechanisms within the core plasma region.However,the realistic scrape-off layer(SOL)plasma is usually simplified,making it difficult to have deeper understanding of wave propagation and absorption within the SOL.In this work,we employ a cold plasma assumption and an artificial absorption mechanism based on the approach of reference(Zhang et al 2022 Nucl.Fusion 62076032),to study wave propagation and absorption in the realistic SOL plasma of the EAST.During the exponential decay of the total coupled power with respect to the toroidal mode numbers,several fluctuations are observed in the case of low collisional frequencies.The fluctuations may be caused by the cavity modes associated with specific toroidal mode numbers.Due to the presence of cut-off densities,the edge power losses and the total coupled power exhibit different behaviors before and after the cut-off layer is“open”.Furthermore,the simulation results obtained from the kinetic model in reference(Zhang et al 2022 Nucl.Fusion 62076032)is discussed.This suggests that both the core-edge combined model and the artificial mechanism are capable of simulating wave propagation and absorption.
基金supported by the National Key R&D Program of China (Grant No. 2022YFE03090000)the National Natural Science Foundation of China (Grant No. 11925501)the Fundamental Research Fund for the Central Universities (Grant No. DUT22ZD215)。
文摘Anomalous transport in magnetically confined plasmas is investigated using temporal fractional transport equations.The use of temporal fractional transport equations means that the order of the partial derivative with respect to time is a fraction. In this case, the Caputo fractional derivative relative to time is utilized, because it preserves the form of the initial conditions. A numerical calculation reveals that the fractional order of the temporal derivative α(α ∈(0, 1), sub-diffusive regime) controls the diffusion rate. The temporal fractional derivative is related to the fact that the evolution of a physical quantity is affected by its past history, depending on what are termed memory effects. The magnitude of α is a measure of such memory effects. When α decreases, so does the rate of particle diffusion due to memory effects. As a result,if a system initially has a density profile without a source, then the smaller the α is, the more slowly the density profile approaches zero. When a source is added, due to the balance of the diffusion and fueling processes, the system reaches a steady state and the density profile does not evolve. As α decreases, the time required for the system to reach a steady state increases. In magnetically confined plasmas, the temporal fractional transport model can be applied to off-axis heating processes. Moreover, it is found that the memory effects reduce the rate of energy conduction and hollow temperature profiles can be sustained for a longer time in sub-diffusion processes than in ordinary diffusion processes.
基金supported by the National MCF Energy R&D Program of China(No.2019YFE03090300)National Natural Science Foundation of China(No.11925501)Fundamental Research Funds for the Central Universities(No.DUT21GJ204)。
文摘Anomalous transport in magnetically confined plasmas is investigated by radial fractional transport equations.It is shown that for fractional transport models,hollow density profiles are formed and uphill transports can be observed regardless of whether the fractional diffusion coefficients(FDCs)are radially dependent or not.When a radially dependent FDC<D_(α)(r)1 is imposed,compared with the case under=D_(α)(r)1.0,it is observed that the position of the peak of the density profile is closer to the core.Further,it is found that when FDCs at the positions of source injections increase,the peak values of density profiles decrease.The non-local effect becomes significant as the order of fractional derivative a 1 and causes the uphill transport.However,as a 2,the fractional diffusion model returns to the standard model governed by Fick’s law.