期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Underconstrained Cable-Driven Parallel Suspension System of Virtual Flight Test Model in Wind Tunnel
1
作者 Huisong Wu kaichun zeng +2 位作者 Li Yu Yan Li Xiping Kou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期395-416,共22页
An underconstrained cable-driven parallel robot(CDPR)suspension system was designed for a virtual flight testing(VFT)model.This mechanism includes two identical upper and lower kinematic chains,each of which comprises... An underconstrained cable-driven parallel robot(CDPR)suspension system was designed for a virtual flight testing(VFT)model.This mechanism includes two identical upper and lower kinematic chains,each of which comprises a cylindrical pair,rotating pair,and cable parallelogram.The model is pulled via two cables at the top and bottom and fixed by a yaw turntable,which can realize free coupling and decoupling with three rotational degrees of freedom of the model.First,the underconstrained CDPR suspension system of the VFT model was designed according to the mechanics theory,the degrees of freedom were verified,and the support platform was optimized to realize the coincidence between the model’s center of mass and the rotation center of the mechanism during the motion to ensure the stability of the support system.Finally,kinematic and dynamical modeling of the underconstrained CDPR suspension system was conducted;the system stiffness and stability criteria were deduced.Thus,the modeling of an underconstrained,reconfigurable,passively driven CDPR was understood comprehensively.Furthermore,dynamic simulations and experiments were used to verify that the proposed system meets the support requirements of the wind tunnel-based VFT model.This study serves as the foundation for subsequent wind tunnel test research on identifying the aerodynamic parameters of aircraft models,and also provides new avenues for the development of novel support methods for thewind tunnel testmodel. 展开更多
关键词 Virtual flight underconstrained cable-driven dynamic modeling stiffness and stability simulation analysis and experiment
下载PDF
Recent Progress on Aeroelasticity of High-Performance Morphing UAVs
2
作者 Binbin Lv Jun Zha +3 位作者 kaichun zeng Hongtao Guo Li Yu Peng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第10期1-29,共29页
The high-performance morphing aircraft has become a research focus all over the world.The morphing aircraft,unlike regular unmanned aerial vehicles(UAVs),has more complicated aerodynamic characteristics,making itmore ... The high-performance morphing aircraft has become a research focus all over the world.The morphing aircraft,unlike regular unmanned aerial vehicles(UAVs),has more complicated aerodynamic characteristics,making itmore difficultto conduct its design,model analysis,and experimentation.This paper reviews the recent process and the current status of aeroelastic issues,numerical simulations,and wind tunnel test of morphing aircrafts.The evaluation of aerodynamic characteristics,mechanism,and relevant unsteady dynamic aerodynamicmodeling throughout the morphing process are the primary technological bottlenecks formorphing aircrafts.The unstable aerodynamic forces have a significant impact on the aircraft handling characteristics,control law design,and flight safety.In the past,the structural analysis of morphing aircrafts,flight dynamics modeling,computational mesh morphing technology,and aerodynamic calculation were performed in promoting the development of next generation UAVs,with nonlinear dynamic challenges includingtransonic aeroelastic problems and high angle of attack aeroelastic problems.At present,many facets of these difficulties,together with the accompanying numerical simulation studies,remain under-explored.In addition,wind tunnel experiments face significant challenges in the dynamic morphing process.Finally,dynamic unsteady aerodynamic characteristics in the continuous morphing process still need to be verified by more related experiments. 展开更多
关键词 Morphing aircraft aeroelasticity numerical simulation wind tunnel test
下载PDF
Dynamics,stability,and control of a four-cable mount system for wind tunnel test
3
作者 Zhenjun ZHAO Zhanwei ZHAO +3 位作者 Yu YAN kaichun zeng Xiaojun SHI Han WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第2期58-75,共18页
A four-cable mount system is proposed for full-model wind tunnel flutter tests,which may adjust the pitch and roll attitude of the aircraft scaled model and ensure that the model is not subjected to cable tension.The ... A four-cable mount system is proposed for full-model wind tunnel flutter tests,which may adjust the pitch and roll attitude of the aircraft scaled model and ensure that the model is not subjected to cable tension.The system provides sufficient support to simulate the free flight of the aircraft by applying appropriate spring stiffness and cable tensions.The proposed fourcable mount system is modeled based on Lagrange mechanics,and its dynamics equations consider aerodynamic effects.The singularity of the system and its bifurcation characteristics under flow conditions are analysed to determine the supercritical bifurcation phenomenon for different tension levels and distances from the front suspension point to the mass centre of the model.The mathematical expressions of the longitudinal flight stability of the cable mount system are derived by linearising the system dynamics equations using small perturbations.The influence of the cable tension,spring stiffness,suspension point position,and other factors on the flight stability of the aircraft are analysed.A feedforward control algorithm is proposed to minimize the total elastic potential energy of the system.The results show that the model is in the level flight state when the elastic potential energy of the four-cable mount system is minimized.A feedback control design method is proposed based on the Lyapunov stability theory to derive the closed-loop stability conditions.The system dynamics model that includes the aircraft rigid body model,flexible cables,pulleys,springs,aerodynamic model,and servo motor control is established using the flexible multibody dynamics method.A multibody dynamics solver and Simulink are used to simulate the attitude adjustment of the model in the wind tunnel and verify the supercritical bifurcation characteristics of the system and the effectiveness of the feedback and feedforward control. 展开更多
关键词 BIFURCATION CABLE Flight dynamics FLUTTER Nonlinear control systems Wind tunnels
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部