期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Synergetic photocatalytic and thermocatalytic reforming of methanol for hydrogen production based on Pt@TiO_(2) catalyst 被引量:2
1
作者 Lei Li Wenjun Ouyang +7 位作者 Zefeng Zheng kaihang ye Yuxi Guo Yanlin Qin Zhenzhen Wu Zhan Lin Tiejun Wang Shanqing Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第5期1258-1266,共9页
In order to efficiently produce H_(2),conventional methanol‐water thermocatalytic(TC)reforming requires a very high temperature due to high Gibbs free energy,while the energy conversion efficiency of methanol‐water ... In order to efficiently produce H_(2),conventional methanol‐water thermocatalytic(TC)reforming requires a very high temperature due to high Gibbs free energy,while the energy conversion efficiency of methanol‐water photocatalytic(PC)reforming is far from satisfaction because of the kinetic limitation.To address these issues,herein,we incorporate PC and TC processes together in a specially designed reactor and realize simultaneous photocatalytic/thermocatalytic(PC‐TC)reforming of methanol in an aqueous phase.Such a design facilitates the synergetic effect of the PC and TC process for H_(2) production due to a lower energy barrier and faster reaction kinetics.The methanol‐water reforming based on the optimized 0.05%Pt@TiO_(2) catalyst delivers an outstanding H_(2) production rate in the PC‐TC process(5.66μmol H_(2)·g^(‒1) catalyst·s^(‒1)),which is about 3 and 7 times than those of the TC process(1.89μmol H_(2)·g^(‒1) catalyst·s^(‒1))and the PC process(0.80μmol H_(2)·g^(‒1) catalyst·s^(‒1)),respectively.Isotope tracer experiments,active intermediate trapping experiments,and theoretical calculations demonstrate that the photo‐generated holes and hydroxyl radicals could enhance the methanol dehydrogenation,water molecule splitting,and water‐gas shift reaction,while high temperature accelerates reaction kinetics.The proposed PC‐TC reforming of methanol for hydrogen production can be a promising technology to solve the energy and environmental issue in the closed‐loop hydrogen economy in the near future. 展开更多
关键词 Aqueous‐phase reforming Photocatalysis Thermocatalysis Pt@TiO2 catalyst METHANOL Hydrogen
下载PDF
A highly durable catalyst based on CoxMn3-xO4 nanosheets for low-temperature formaldehyde oxidation 被引量:10
2
作者 Yongchao Huang kaihang ye +4 位作者 Haibo Li Wenjie Fan FengyiZhao Yuanming Zhang Hongbing Ji 《Nano Research》 SCIE EI CAS CSCD 2016年第12期3881-3892,共12页
Cost-effective catalysts for the oxidation of volatile organic compounds (VOCs) are critical to energy conversion applications and environmental protection. The main bottleneck of this process is the development of ... Cost-effective catalysts for the oxidation of volatile organic compounds (VOCs) are critical to energy conversion applications and environmental protection. The main bottleneck of this process is the development of an efficient, stable, and cost-effective catalyst that can oxidize HCHO at low temperature. Here, an advanced material consisting of manganese cobalt oxide nanosheet arrays uniformly covered on a carbon textile is successfully fabricated by a simple anodic electrodeposition method combined with post annealing treatment, and can be directly applied as a high-performance catalytic material for HCHO elimination. Benefiting from the increased surface oxygen species and improved redox properties, the as-prepared manganese cobalt oxide nanosheets showed substantially higher catalytic activity for HCHO oxidation. The catalyst completely converted HCHO to CO2 at temperatures as low as 100 ℃, and exhibited excellent catalytic stability. Such impressive results are rarely achieved by non-precious metal-based catalysts at such low temperatures. 展开更多
关键词 CoxMn3-xO4 nanosheet FORMALDEHYDE catalytic oxidation mechanism
原文传递
Strain tuned efficient heterostructure photoelectrodes
3
作者 Haihong Zheng Mingyang Li +5 位作者 Jinsong Chen Anchang Quan kaihang ye Hang Ren Sheng Hu Yang Cao 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1450-1454,共5页
van der Waals (vdWs) heterostructures based on two-dimensional (2D) materials have become a promising candidate for photoelectrochemical (PEC) catalyst not only because of the freedom in materials design that enable t... van der Waals (vdWs) heterostructures based on two-dimensional (2D) materials have become a promising candidate for photoelectrochemical (PEC) catalyst not only because of the freedom in materials design that enable the band-offset construction and facilitate the charge separation. They also provide a platform for the study of various of interface effect in PEC. Here, we report a new kind of mixed-dimensional vdWs heterostructure photoelectrode and investigate the strain enhanced PEC performance at vdWs interfaces. Our heterostructures are composed of 2D n-type MoS_(2) nanosheets and three-dimensional (3D) p-type Cu_(2)O nanorod arrays (NRAs), where Cu_(2)O NRAs introduce periodically strain in the p-n junction interface. We find a promotion of the HER catalytic activities in heterostructure based PEC photoelectrodes using in-situ measurement techniques including the scanning electrochemical cell microscopy and various local spectrum probe measurements. This is attributed to the efficient charge separation at the strained heterointerface. Our results demonstrate an interesting venue for understanding the local interface effects with high spatial resolution, and shed light on design and developing high-efficiency photoelectrodes. 1L MoS_(2)/Cu_(2)O vdWs heterostructure photocathodes were prepared by nanoindentation technology. The effects of strain on promoting charge separation at the heterointerface were verified by the enhanced performances in PEC hydrogen evolution reaction of vdWs heterostructure through scanning electrochemical cell microscopy technique and various local spectrum probe measurements. 展开更多
关键词 Photoelectrochemical water splitting van der Waals heterostructures Two-dimensional MoS_(2) Strain engineering Scanning electrochemical cell microscopy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部