期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fabrication of a Hydrophobic Hierarchical Surface on Shale Using Modified Nano-SiO_(2)for Strengthening the Wellbore Wall in Drilling Engineering 被引量:2
1
作者 Xianbin Huang Jinsheng Sun +3 位作者 He Li Ren Wang kaihe lv Haichao Li 《Engineering》 SCIE EI 2022年第4期101-110,共10页
Wellbore stability is essential for safe and efficient drilling during oil and gas exploration and development.This paper introduces a hydrophobic nano-silica(HNS)for use in strengthening the wellbore wall when using ... Wellbore stability is essential for safe and efficient drilling during oil and gas exploration and development.This paper introduces a hydrophobic nano-silica(HNS)for use in strengthening the wellbore wall when using a water-based drilling fluid(WBF).The wellbore-strengthening performance was studied using the linear swelling test,hot-rolling recovery test,and compressive strength test.The mechanism of strengthening the wellbore wall was studied by means of experiments on the zeta potential,particle size,contact angle,and surface tension,and with the use of a scanning electron microscope(SEM).The surface free energy changes of the shale before and after HNS treatment were also calculated using the contact angle method.The experimental results showed that HNS exhibited a good performance in inhibiting shale swelling and dispersion.Compared with the use of water,the use of HNS resulted in a 20%smaller linear swelling height of the bentonite pellets and an 11.53 times higher recovery of water-sensitive shale—a performance that exceeds those of the commonly used shale inhibitors KCl and polyamines.More importantly,the addition of HNS was effective in preventing a decrease in shale strength.According to the mechanism study,the good wellbore-strengthening performance of HNS can be attributed to three aspects.First,the positively charged HNS balances parts of the negative charges of clay by means of electrostatic adsorption,thus inhibiting osmotic hydration.Second,HNS fabricates a lotus-leaf-like surface with a micro-nano hierarchical structure on shale after adsorption,which significantly increases the water contact angle of the shale surface and considerably reduces the surface free energy,thereby inhibiting surface hydration.Third,the decrease in capillary action and the effective plugging of the shale pores reduce the invasion of water and promote wellbore stability.The approach described herein may provide an avenue for inhibiting both the surface hydration and the osmotic hydration of shale. 展开更多
关键词 HYDROPHOBIC NANOPARTICLE Shale inhibitor Drilling fluid Wellbore stability
下载PDF
Development and performance evaluation of a high temperature resistant, internal rigid, and external flexible plugging agent for water-based drilling fluids
2
作者 Zhe Xu Jinsheng Sun +5 位作者 Li Li kaihe lv Jingping Liu Zhiwen Dai Xianfa Zhang Zonglun Wang 《Petroleum》 EI CSCD 2023年第1期33-40,共8页
During the drilling process for oil and gas production,a larger number of drilling fluids invade the formation,causing severe formation damage and wellbore collapsing,which seriously hinders the efficient production o... During the drilling process for oil and gas production,a larger number of drilling fluids invade the formation,causing severe formation damage and wellbore collapsing,which seriously hinders the efficient production of deep oil and gas.Although several plugging agents have been developed for efficient fracture sealing in recent years,the development of high-performance plugging agents with self-adaptive ability and high-temperature resistance remain a challenge.Herein,we report the synthesis of an internal rigid and external flexible plugging agent PANS by reversed-phase emulsion polymerization with nano-silica as the rigid core and poly(acrylamide-co-N-vinylpyrrolidone)as a flexible shell.The plugging agent has a median particle size of 10.5μm and can self-adapt to seal the microfractures and fractures in the formation,leading to an effective reduction in the filtration loss of bentonite water-based drilling fluid under both low temperature and low pressure(LTLP)and high temperature and high pressure(HTHP)conditions.In addition,compared with the neat nano-silica(500 nm),the sealing efficiency of PANS toward 100–120 mesh sand bed was increased by 71.4%after hot rolling at 180°C. 展开更多
关键词 Internal rigidity External flexibility Plugging agent Filter loss reduction Plugging performance
原文传递
The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering emulsions and enhance oil recovery
3
作者 Han Jia Jiajun Dai +7 位作者 Tingyi Wang Yingbiao Xu Lingyu Zhang Jianan Wang Lin Song kaihe lv Dexin Liu Pan Huang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第7期1101-1113,共13页
Nanoparticles with high surface energy and chemical activity have drawn substantial attention in petroleum industry. Recently, Janus nanoparticles exhibited tremendous potential in enhanced oil recovery (EOR) due to t... Nanoparticles with high surface energy and chemical activity have drawn substantial attention in petroleum industry. Recently, Janus nanoparticles exhibited tremendous potential in enhanced oil recovery (EOR) due to their asymmetric structures and properties. In this study, a series of amphiphilic pseudo-Janus@OTAB (PJ@C18) nanoparticles with different concentrations of stearyltrimethylammoium bromide (OTAB) were successfully fabricated. The structures and properties of PJ@C18 were characterized by Fourier transform infrared spectroscopy and ζ-potential measurements. Based on the emulsification experimental results, the interaction models and the self-assembly behavior between hydrophilic nanoparticles (SiO_(2)@NH_(2)) and OTAB molecules at the oil/water interface were proposed, which was further confirmed via the measurements of the contact angle and dynamic interfacial tension. Interestingly, it was found that the change of pH value from 7.5 to 4.0 caused the type reversal of the PJ@C18-1000 stabilized Pickering emulsions. Furthermore, the PJ@C18-1000 stabilized Pickering emulsion system with excellent salt and temperature tolerances (10000 mg∙L^(–1), 90℃) significantly improved the oil recovery in the single-tube (more than 17%) and double-tube (more than 25%) sand pack model flooding tests. The findings of this study could help to better understand the construction mechanism of pseudo-Janus silica/surfactant assembly and the potential application of PJ@C18-1000 stabilized Pickering emulsions for EOR. 展开更多
关键词 Janus nanoparticles SURFACTANT double phase inversion SELF-ASSEMBLY enhanced oil recovery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部