Mesenchymal stem/stromal cells(MSCs)are extensively studied as cell-therapy agents for neurological diseases.Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’neuroprotective functions...Mesenchymal stem/stromal cells(MSCs)are extensively studied as cell-therapy agents for neurological diseases.Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’neuroprotective functions.Exosomes transfer functional molecules including proteins,lipids,metabolites,DNAs,and coding and non-coding RNAs from MSCs to their target cells.Emerging evidence shows that exosomal microRNAs(miRNAs)play a key role in the neuroprotective properties of these exosomes by targeting several genes and regulating various biological processes.Multiple exosomal miRNAs have been identified to have neuroprotective effects by promoting neurogenesis,neurite remodeling and survival,and neuroplasticity.Thus,exosomal miRNAs have significant therapeutic potential for neurological disorders such as stroke,traumatic brain injury,and neuroinflammatory or neurodegenerative diseases and disorders.This review discusses the neuroprotective effects of selected miRNAs(miR-21,miR-17-92,miR-133,miR-138,miR-124,miR-30,miR146a,and miR-29b)and explores their mechanisms of action and applications for the treatment of various neurological disease and disorders.It also provides an overview of state-of-the-art bioengineering approaches for isolating exosomes,optimizing their yield and manipulating the miRNA content of their cargo to improve their therapeutic potential.展开更多
基金Supported by the National Institute on Aging of the National Institutes of Health under Award No.P30AG010129the UC Davis Alzheimer's Disease Center Pilot Program,No.5R01NS100761-02 and No.1R01NS115860-01A1+1 种基金the Shriners Hospitals for Children Research Grants,No.85108-NCA-19 and No.85135-NCA-21the Shriners Hospitals for Children Postdoctoral Fellowship,No.84705-NCA-19.
文摘Mesenchymal stem/stromal cells(MSCs)are extensively studied as cell-therapy agents for neurological diseases.Recent studies consider exosomes secreted by MSCs as important mediators for MSCs’neuroprotective functions.Exosomes transfer functional molecules including proteins,lipids,metabolites,DNAs,and coding and non-coding RNAs from MSCs to their target cells.Emerging evidence shows that exosomal microRNAs(miRNAs)play a key role in the neuroprotective properties of these exosomes by targeting several genes and regulating various biological processes.Multiple exosomal miRNAs have been identified to have neuroprotective effects by promoting neurogenesis,neurite remodeling and survival,and neuroplasticity.Thus,exosomal miRNAs have significant therapeutic potential for neurological disorders such as stroke,traumatic brain injury,and neuroinflammatory or neurodegenerative diseases and disorders.This review discusses the neuroprotective effects of selected miRNAs(miR-21,miR-17-92,miR-133,miR-138,miR-124,miR-30,miR146a,and miR-29b)and explores their mechanisms of action and applications for the treatment of various neurological disease and disorders.It also provides an overview of state-of-the-art bioengineering approaches for isolating exosomes,optimizing their yield and manipulating the miRNA content of their cargo to improve their therapeutic potential.