期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向语义通信网络的能效跨层优化
1
作者 余开文 樊仁和 +2 位作者 苟文龙 俞传航 武刚 《中国科学:信息科学》 CSCD 北大核心 2024年第4期758-776,共19页
语义通信关注传输信息的内在含义,通过语义提取可显著减少需要传输的数据量,提高通信效率,在未来智能设备通信场景中展现出巨大的潜力.然而,深度学习使能的语义编解码进一步加剧传统通信的能量消耗.针对该问题,本文提出一种联合跨层优... 语义通信关注传输信息的内在含义,通过语义提取可显著减少需要传输的数据量,提高通信效率,在未来智能设备通信场景中展现出巨大的潜力.然而,深度学习使能的语义编解码进一步加剧传统通信的能量消耗.针对该问题,本文提出一种联合跨层优化框架,并设计了一种语义能效指标来评估用户的体验质量和全局系统的能量损耗.将该优化过程建模为部分可观测的马尔可夫过程,联合优化物理层中的功率控制和语义层中的语义压缩配置:功率分配用于消除小区间干扰,语义压缩等级配置用于优化语义传输效率.仿真结果表明,所提框架和算法能够有效解决语义层和物理层的联合优化问题. 展开更多
关键词 资源分配 语义通信 语义感知网络 能量效率 多智能体强化学习
原文传递
Local Observations-Based Energy-Efficient Multi-Cell Beamforming via Multi-Agent Reinforcement Learning
2
作者 kaiwen yu Gang Wu +1 位作者 Shaoqian Li Geoffrey Ye Li 《Journal of Communications and Information Networks》 EI CSCD 2022年第2期170-180,共11页
With affordable overhead on information exchange,energy-efficient beamforming has potential to achieve both low power consumption and high spectral efficiency.This paper formulates the problem of joint beamforming and... With affordable overhead on information exchange,energy-efficient beamforming has potential to achieve both low power consumption and high spectral efficiency.This paper formulates the problem of joint beamforming and power allocation for a multiple-input single-output(MISO)multi-cell network with local observations by taking the energy efficiency into account.To reduce the complexity of joint processing of received signals in presence of a large number of base station(BS),a new distributed framework is proposed for beamforming with multi-cell cooperation or competition.The optimization problem is modeled as a partially observable Markov decision process(POMDP)and is solved by a distributed multi-agent self-decision beamforming(DMAB)algorithm based on the distributed deep recurrent Q-network(D2RQN).Furthermore,limited-information exchange scheme is designed for the inter-cell cooperation to boost the global performance.The proposed learning architecture,with considerably less information exchange,is effective and scalable for a high-dimensional problem with increasing BSs.Also,the proposed DMAB algorithms outperform distributed deep Q-network(DQN)based methods and non-learning based methods with significant performance improvement. 展开更多
关键词 distributed beamforming energy efficiency deep reinforcement learning interference-cooperation POMDP
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部